小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.6.3平面与平面垂直第1课时平面与平面垂直的判定(用时45分钟)【选题明细表】知识点、方法题号判定定理的理解及应用1,3,6,7二面角2,4,9综合应用5,8,10,11,12基础巩固1.在长方体的侧面中,与平面ABCD垂直的平面有()个A.1个B.2个C.3个D.4个【答案】D【解析】如图在长方体中,侧棱与底面都是垂直的,所以侧面与底面ABCD垂直.平面、平面、平面、平面均与平面ABCD垂直.故选:D2.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不确定【答案】D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】如图所示,在正方体中,二面角与二面角的两个半平面分别对应垂直,但是这两个二面角既不相等,也不互补,所以这两个二面角不一定相等或互补.例如:开门的过程中,门所在平面及门轴所在墙面分别垂直于地面与另一墙面,但门所在平面与门轴所在墙面所成二面角的大小不定,而另一二面角却是,所以这两个二面角不一定相等或互补.3.垂直于正方形所在平面,连接,,,,,则下列垂直关系正确的个数是()①面面②面面③面面④面面A.1B.2C.3D.4【答案】B【解析】证明:对于①,因为底面为正方形所以由题意可知平面所以,而小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以平面又因为平面所以平面平面,所以①正确;对于②,因为故由①可得平面,而平面所以平面平面,所以②正确③④错误,不垂直.综上可知,正确的为①②故选:B4.从空间一点P向二面角α-l-β的两个面α,β分别作垂线PE,PF,E,F为垂足,若∠EPF=60°,则二面角α-l-β的平面角的大小是()A.60°B.120°C.60°或120°D.不确定【答案】C【解析】∠EPF=60°就是两个平面α和β的法向量的夹角,它与二面角的平面角相等或互补,故二面角的平面角的大小为60°或120°.故选:C.5.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中正确的个数()①AC∥平面BEF;②B、C、E、F四点可能共面;③若EF⊥CF,则平面ADEF⊥平面ABCD;④平面BCE与平面BEF可能垂直小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.0B.1C.2D.3【答案】C【解析】对①,在图②中,连接交于点,取中点,连接MO,易证AOMF为平行四边形,即AC//FM,所以AC//平面BEF,故①正确;对②,如果B、C、E、F四点共面,则由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,这样四边形ADEF为平行四边形,与已知矛盾,故②不正确;对③,在梯形ADEF中,由平面几何知识易得EFFD,又EFCF,∴EF平面CDF,即有CDEF,∴CD平面ADEF,则平面ADEF平面ABCD,故③正确;对④,在图②中,延长AF至G,使得AF=FG,连接BG,EG,易得平面BCE平面ABF,BCEG四点共面.过F作FNBG于N,则FN平面BCE,若平面BCE平面BEF,则过F作直线与平面BCE垂直,其垂足在BE上,矛盾,故④错误.故选:C.6.设α,β是空间内两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用序号表示).【答案】①③④②⇒【解析】将①③④作为条件,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为所以或,又因为,所以故①③④②⇒;7.如图,AB为圆O的直径,点C在圆周上异于点A,,直线PA垂直于圆O所在的平面,点M是线段PB的中点有以下四个命题:①∥平面;②∥平面;...