小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.2基本不等式1.利用基本不等式比较大小;2.变形技巧:“1”的代换;3.证明不等式;4.不等式的证明技巧—字母轮换不等式的证法;5.求参数的取值范围问题;6.求最大(小)值;7.均值不等式在实际问题中的应用一、单选题1.(2020·浙江高一单元测试)若,则下列结论中不恒成立的是()A.B.C.D.2.(2020·全国高一课时练习)若,则下列不等式一定成立的是()A.B.C.D.3.(2020·黑龙江南岗·哈师大附中高一期末)已知x,y>0且x+4y=1,则的最小值为()A.8B.9C.10D.114.(2020·浙江高一单元测试)如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运()A.3年B.4年C.5年D.6年小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.(2020·浙江鄞州·宁波华茂外国语学校高三一模)已知实数,,,则的最小值是()A.B.C.D.6.(2020·全国高三课时练习(理))已知关于x的不等式在上恒成立,则实数a的最小值为()A.1B.C.2D.7.(2020·广西兴宁·南宁三中高一期末)已知,,,且,,则的最小值是()A.3B.4C.5D.68.(2020·皇姑·辽宁实验中学高三其他(文))已知实数满足,则的最大值为()A.1B.2C.3D.49.(2020·河南高二期末(理))设为任意正数.则这三个数()A.都大于2B.都小于2C.至少有一个不小于2D.至少有一个不大于210.(2020·浙江金华·高一期末)已知,,则的最小值为()A.B.6C.D.二、多选题11.(2020·浙江高一单元测试)已知函数,则该函数的().小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.最小值为3B.最大值为3C.没有最小值D.最大值为12.(2020·海南高二期末)已知实数、满足,则下列不等式一定成立的有()A.B.C.D.13.(2020·山东德州·高三二模)若正实数a,b满足则下列说法正确的是()A.ab有最大值B.有最大值C.有最小值2D.有最大值14.(2019·山东泰山·泰安一中高一期中)设,,给出下列不等式恒成立的是().A.B.C.D.三、填空题15.(2020·浙江高一单元测试)已知,则的最小值为______.16.(2020·全国高一)若,则“”是“”的_____条件17.(2020·全国高一)若实数x,y满足xy=1,则x2+4y2的最小值为______.四、双空题18.(2019·全国高一课时练习)若,则的最小值是______,此时______.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com19.(2020·浙江鄞州·宁波诺丁汉附中高一期中)用一根长为的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的宽为________;高为________.20.(2020·浙江金华·高一期中)已知正数a,b满足a+b=1,则的最小值等于__________,此时a=____________.21.(2017·北京人大附中高一期中)已知正数、满足,则:(1)的最小值为________.(2)若恒成立,则实数的取值范围是______.五、解答题22.(2020·全国高一课时练习)已知a,b,c为任意实数,求证:.23.(2020·全国)设,,都是正数,求证:.24.(2020·全国高一课时练习)已知a>0,b>0,a+b=1,求证:.25.(2020·全国高一课时练习)用篱笆围一个面积为的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?26.(2020·浙江高一单元测试)(1)已知x>3,求y=x+4x−3的最小值,并求取到最小值时x的值;(2)已知x>0,y>0,x2+y3=2,求xy的最大值,并求取到最大值时x、y的值.27.(2020·浙江高一单元测试)已知且,求使不等式恒成立的实数m的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com