小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第五章函数的应用(二)4.5.2二分法求方程的近似解一、选择题1.(2019·全国高一课时练习)某同学用二分法求方程在x∈(1,2)内近似解的过程中,设,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解析】 f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x–8存在一个零点,该同学在第二次应计算的函数值1.25,故选C.2.(2019·全国高一课时练习)下列函数图象中,不能用二分法求函数零点的是()A.B.C.D.【答案】D【解析】根据零点存在定理,对于D,在零点的左右附近,函数值不改变符号,所以不能用二分法求函数零点,故选D.3.(2019·全国高一课时练习)用二分法求函数的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f(1)=–2,f(1.5)=0.625,f(1.25)≈–0.984,f(1.375)≈–0.260,关于下一步的说法正确的是()A.已经达到精确度的要求,可以取1.4作为近似值B.已经达到精确度的要求,可以取1.375作为近似值小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.没有达到精确度的要求,应该接着计算f(1.4375)D.没有达到精确度的要求,应该接着计算f(1.3125)【答案】C【解析】由由二分法知,方程的根在区间区间(1.375,1.5),没有达到精确度的要求,应该接着计算f(1.4375).故选C.4.(2019·全国高一课时练习)用二分法求方程的近似解,求得的部分函数值数据如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程的近似解可取为A.B.C.D.【答案】C【解析】根据表中数据可知,,由精确度为可知,,故方程的一个近似解为,选C.5.(2019·全国高一课时练习)在用“二分法”求函数f(x)零点近似值时,第一次所取的区间是[-2,4],则第三次所取的区间可能是()A.[1,4]B.[-2,1]C.D.【答案】D【解析】 第一次所取的区间是[-2,4],∴第二次所取的区间可能为[-2,1],[1,4],∴第三次所取的区间可能为.6.(2019·全国高一课时练习)下列函数中,有零点但不能用二分法求零点近似解的是()①y=3x2-2x+5;②③;④y=x3-2x+3;⑤y=x2+4x+8.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.①②③B.⑤C.①⑤D.①④【答案】B【解析】由二分法的过程可知,函数零点左右的函数值异号时才可以用二分法求解,所以①②③④均可.⑤中y=x2+4x+8=0,Δ=0,不满足二分法求函数零点的条件.故选B.二、填空题7.(2019·全国高一课时练习)用二分法研究函数f(x)在区间(0,1)内的零点时,计算得f(0)<0,f(0.5)<0,f(1)>0,那么下一次应计算x=_________时的函数值.【答案】0.75【解析】 f(0)<0,f(0.5)<0,f(1)>0,∴根据函数零点的判定定理,函数零点落在区间(0.5,1)内,取x=0.75.故答案为:0.75.8.(2019·全国高一课时练习)用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:据此数据,可得方程3x-x-4=0的一个近似解为________(精确到0.01)【答案】1.56【解析】因为函数f(x)=3x-x-4,令f(a)f(b)<0,则方程f(x)=0在(a,b)内有实根,从而x≈1.56.9.(2019·全国高一课时练习)某同学在借助计算器求“方程lgx=2-x的近似解(精确度为0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.【答案】1.5,1.75,1.875,1.8125【解析】第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.8125).10.(2019·全国高一课时练习)用二分法求方程lnx-2+...