小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第2单元一元二次函数、方程与不等式(基础篇)基础知识讲解一.不等式定理【基础知识】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.二.不等式大小比较【技巧方法】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.三.基本不等式【基础知识】基本不等式主要应用于求某些函数的最值及证明不等式.其可表述为:两个正实数的几何平均数小于或等于它们的算术平均数.公式为:≥(a≥0,b≥0),变形为ab≤()2或者a+b≥2.常常用于求最值和值域.四、基本不等式的应用【基础知识】1、求最值2、利用基本不等式证明不等式3、基本不等式与恒成立问题4、均值定理在比较大小中的应用【技巧方法】技巧一:凑项需要调整项的符号,又要配凑项的系数,使其积为定值.技巧二:凑系数遇到无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com求最大值.技巧三:分离技巧四:换元一般,令t=x+1,化简原式在分离求最值.技巧五:结合函数f(x)=x+的单调性.技巧六:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.技巧七:取平方两边平方构造出“和为定值”,为利用基本不等式创造条件.总结我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式.五.二次函数的性质【基础知识】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【技巧方法】①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com轴x=;最值为:f();判别式△=b24﹣ac,当△=0时,函数与x轴只有一个交点;△>0时,与x轴有两个交点;当△<0时无交点.②根与系数的关系.若△≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=,x1•x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x1+﹣b)2+c;六.一元二次不等式【基础知识】含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a不等于0)其中ax2+bx+c是实数域内的二次三项式.【技巧方法】(1)当△=b24﹣ac>0时,一元二次方程ax2+bx+c=0有两个实根,那么ax2+bx+c可写成a(x﹣x1)(x﹣x2)(2)当△=b24﹣ac=0时,一元二次方程ax2+bx+c=0仅有一个实根,那么ax2+bx+c可写成a(x﹣x1)2.(3)当△=b24﹣ac<0时.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com一元二次方程ax2+bx+c=0没有实根,那么ax2+bx+c与x轴没有交点.二.不等式的解法(1)...