小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三年专题03导数及其应用(选择题、填空题)(理科专用)1.【2022年全国甲卷】已知a=3132,b=cos14,c=4sin14,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】A【解析】【分析】由cb=4tan14结合三角函数的性质可得c>b;构造函数f(x)=cosx+12x2−1,x∈(0,+∞),利用导数可得b>a,即可得解.【详解】因为cb=4tan14,因为当x∈(0,π2),sinx<x<tanx所以tan14>14,即cb>1,所以c>b;设f(x)=cosx+12x2−1,x∈(0,+∞),f'(x)=−sinx+x>0,所以f(x)在(0,+∞)单调递增,则f(14)>f(0)=0,所以cos14−3132>0,所以b>a,所以c>b>a,故选:A2.【2022年新高考1卷】设a=0.1e0.1,b=19,c=−ln0.9,则()A.a<b<cB.c<b<aC.c<a<bD.a<c<b【答案】C【解析】【分析】构造函数f(x)=ln(1+x)−x,导数判断其单调性,由此确定a,b,c的大小.【详解】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设f(x)=ln(1+x)−x(x>−1),因为f'(x)=11+x−1=−x1+x,当x∈(−1,0)时,f'(x)>0,当x∈(0,+∞)时f'(x)<0,所以函数f(x)=ln(1+x)−x在(0,+∞)单调递减,在(−1,0)上单调递增,所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b>c,所以f(−110)<f(0)=0,所以ln910+110<0,故910<e−110,所以110e110<19,故a<b,设g(x)=xex+ln(1−x)(0<x<1),则g'(x)=(x+1)ex+1x−1=(x2−1)ex+1x−1,令ℎ(x)=ex(x2−1)+1,ℎ'(x)=ex(x2+2x−1),当0<x<❑√2−1时,ℎ'(x)<0,函数ℎ(x)=ex(x2−1)+1单调递减,当❑√2−1<x<1时,ℎ'(x)>0,函数ℎ(x)=ex(x2−1)+1单调递增,又ℎ(0)=0,所以当0<x<❑√2−1时,ℎ(x)<0,所以当0<x<❑√2−1时,g'(x)>0,函数g(x)=xex+ln(1−x)单调递增,所以g(0.1)>g(0)=0,即0.1e0.1>−ln0.9,所以a>c故选:C.3.【2021年新高考1卷】若过点可以作曲线的两条切线,则()A.B.C.D.【答案】D【解析】【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.【详解】在曲线上任取一点,对函数求导得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,,此时函数单调递增,当时,,此时函数单调递减,所以,,由题意可知,直线与曲线的图象有两个交点,则,当时,,当时,,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.4.【2020年新课标1卷理科】函数的图像在点处的切线方程为()A.B.C.D.【答案】B【解析】【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.【详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.【2020年新课标3卷理科】若直线l与曲线y=和x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+【答案】D【解析】【分析】根据导数的几何意义设出直线的方程,再由直线与圆相切的性质,即可...