小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三年专题05立体几何(选择题、填空题)(文科专用)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积V=2+42×2×2=12.故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则()A.AB=2ADB.AB与平面AB1C1D所成的角为30°小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.AC=CB1D.B1D与平面BB1C1C所成的角为45°【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设AB=a,AD=b,AA1=c,依题以及长方体的结构特征可知,B1D与平面ABCD所成角为∠B1DB,B1D与平面AA1B1B所成角为∠DB1A,所以sin30∘=cB1D=bB1D,即b=c,B1D=2c=❑√a2+b2+c2,解得a=❑√2c.对于A,AB=a,AD=b,AB=❑√2AD,A错误;对于B,过B作BE⊥AB1于E,易知BE⊥平面AB1C1D,所以AB与平面AB1C1D所成角为∠BAE,因为tan∠BAE=ca=❑√22,所以∠BAE≠30∘,B错误;对于C,AC=❑√a2+b2=❑√3c,CB1=❑√b2+c2=❑√2c,AC≠CB1,C错误;对于D,B1D与平面BB1C1C所成角为∠DB1C,sin∠DB1C=CDB1D=a2c=❑√22,而0<∠DB1C<90∘,所以∠DB1C=45∘.D正确.故选:D.3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comS甲和S乙,体积分别为V甲和V乙.若S甲S乙=2,则V甲V乙=¿()A.❑√5B.2❑√2C.❑√10D.5❑√104【答案】C【解析】【分析】设母线长为l,甲圆锥底面半径为r1,乙圆锥底面圆半径为r2,根据圆锥的侧面积公式可得r1=2r2,再结合圆心角之和可将r1,r2分别用l表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l,甲圆锥底面半径为r1,乙圆锥底面圆半径为r2,则S甲S乙=πr1lπr2l=r1r2=2,所以r1=2r2,又2πr1l+2πr2l=2π,则r1+r2l=1,所以r1=23l,r2=13l,所以甲圆锥的高ℎ1=❑√l2−49l2=❑√53l,乙圆锥的高ℎ2=❑√l2−19l2=2❑√23l,所以V甲V乙=13πr1❑2ℎ113πr2❑2ℎ2=49l2×❑√53l19l2×2❑√23l=❑√10.故选:C.4.【2022年全国乙卷】在正方体ABCD−A1B1C1D1中,E,F分别为AB,BC的中点,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.平面B1EF⊥平面BDD1B.平面B1EF⊥平面A1BDC.平面B1EF/¿平面A1ACD.平面B1EF/¿平面A1C1D【答案】A【解析】【分析】证明EF⊥平面BDD1,即可判断A;如图,以点D为原点,建立空间直角坐标系,设AB=2,分别求出平面B1EF,A1BD,A1C1D的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体ABCD−A1B1C1D1中,AC⊥BD且DD1⊥平面ABCD,又EF⊂平面ABCD,所以EF⊥DD1,因为E,F分别为AB,BC的中点,所以EF∥AC,所以EF⊥BD,又BD∩DD1=D,所以EF⊥平面BDD1,又EF⊂平面B1EF,所以平面B1EF⊥平面BDD1,故A正确;对于选项B,如图所示,设,,则为平面与平面的交线,在内,作于点,在内,作,交于点,连结,则或其补角为平面与平面所成二面角的平面角,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由勾股定理可知:,,底面正方形中,为中点,则,由勾股定理可得,从而有:,据此可得,即,据此可得平面平面不成立,选项B错误;对于选项C,取的中点,则,由于与平面相交,故平面平面不成...