小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三年专题06立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=❑√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)❑√55.【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD/¿AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=❑√32,BD=❑√DE2+BE2=❑√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)解:如图,以点D为原点建立空间直角坐标系,BD=❑√3,则A(1,0,0),B(0,❑√3,0),P(0,0,❑√3),则⃗AP=(−1,0,❑√3),⃗BP=(0,−❑√3,❑√3),⃗DP=(0,0,❑√3),设平面PAB的法向量⃗n=(x,y,z),则有{n→⋅AP→=−x+❑√3z=0n→⋅BP→=−❑√3y+❑√3z=0,可取⃗n=(❑√3,1,1),则cos〈⃗n,⃗DP〉=⃗n⋅⃗DP¿⃗n∨¿⃗DP∨¿=❑√55¿,所以PD与平面PAB所成角的正弦值为❑√55.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.【答案】(1)证明过程见解析(2)CF与平面ABD所成的角的正弦值为4❑√37【解析】【分析】(1)根据已知关系证明△ABD≌△CBD,得到AB=CB,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE⊥DE,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.(1)因为AD=CD,E为AC的中点,所以AC⊥DE;在△ABD和△CBD中,因为AD=CD,∠ADB=∠CDB,DB=DB,所以△ABD≌△CBD,所以AB=CB,又因为E为AC的中点,所以AC⊥BE;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又因为DE,BE⊂平面BED,DE∩BE=E,所以AC⊥平面BED,因为AC⊂平面ACD,所以平面BED⊥平面ACD.(2)连接EF,由(1)知,AC⊥平面BED,因为EF⊂平面BED,所以AC⊥EF,所以S△AFC=12AC⋅EF,当EF⊥BD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CB=AB=2,又因为∠ACB=60°,所以△ABC是等边三角形,因为E为AC的中点,所以AE=EC=1,BE=❑√3,因为AD⊥CD,所以DE=12AC=1,在△DEB中,DE2+BE2=BD2,所以BE⊥DE.以E为坐标原点建立如图所示的空间直角坐标系E−xyz,则A(1,0,0),B(0,❑√3,0),D(0,0,1),所以⃑AD=(−1,0,1),⃑AB=(−1,❑√3,0),设平面ABD的一个法向量为⃑n=(x,y,z),则¿,取y=❑√3,则⃑n=(3,❑√3,3),又因为C(−1,0,0),F(0,❑√34,34),所以⃑CF=(1,❑√34,34),所以cos⟨⃑n,⃑CF⟩=⃑n⋅⃑CF|⃑n||⃑CF|=6❑√21×❑√74=4❑√37,设CF与平面ABD所成的角的正弦值为θ(0≤θ≤π2),所以sinθ=|cos⟨⃑n,⃑CF⟩|=4❑√37,所以CF与平面ABD所成的角的正弦值为4❑√37.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2❑√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求二面角A−BD−C的正弦值.【答...