小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三年专题06立体几何(解答题)(文科专用)1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF/¿平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC的体积.3.【2021年甲卷文科】已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.4.【2021年乙卷文科】如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.5.【2020年新课标1卷文科】如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P−ABC的体积.6.【2020年新课标2卷文科】如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱锥B–EB1C1F的体积.7.【2020年新课标3卷文科】如图,在长方体中,点,分别在棱,上,且,.证明:(1)当时,;(2)点在平面内.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com