小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com8.3列联表与独立性检验8.3.1分类变量与列联表8.3.2独立性检验A必知级备识基础练1.(2022河南期中)在研究肥胖与高血压的关系时,通过收集数据、整理分析数据得到“高血压与肥胖有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.在100个肥胖的人中至少有99人患有高血压B.肥胖的人至少有99%的概率患有高血压C.在100个高血压患者中一定有肥胖的人D.在100个高血压患者中可能没有肥胖的人2.若由一个2×2列联表中的数据计算得χ2=4.013,那么认为两个变量有关系犯错误的概率不大于()α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828A.0.05B.0.001C.0.01D.0.0053.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关联”进行了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.零假设为H0:追星和性别无关联.若依据α=0.05的独立性检验认为追星和性别有关联,则男生的人数至少为()参考数据及公式如下:α0.050.010.001xα3.8416.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).A.12B.11C.10D.184.某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如下的列联表.零假设为H0:男、女生对该食堂的服务评价无差异.经计算χ2≈4.762,则可以推断出()性别满意不满意合计小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com男302050女401050合计7030100附:α0.10.050.01xα2.7063.8416.635A.该学校男生对食堂服务满意的概率的估计值为45B.调研结果显示,该学校男生比女生对食堂服务更满意C.依据α=0.05的独立性检验认为男、女生对该食堂服务的评价有差异D.依据α=0.01的独立性检验认为男、女生对该食堂服务的评价有差异5.在对某小学的学生进行吃零食的调查中,得到数据如下表:性别吃零食不吃零食合计男273461女122941合计3963102根据上述数据分析,可得χ2约为.6.在独立性检验中,xα有两个临界值:3.841和6.635.当χ2≥3.841时,依据α=0.05的独立性检验认为两个事件有关联;当χ2≥6.635时,依据α=0.01的独立性检验认为两个事件有关联;当χ2<3.841时,依据α=0.05的独立性检验认为两个事件无关联.在一项打鼾与患心脏病的调查中,共调查了2000人,零假设为H0:打鼾与患心脏病之间无关联.经计算χ2=20.87.根据这一数据分析,我们有理由认为打鼾与患心脏病之间.(填“有关联”或“无关联”)7.有人发现了一个有趣的现象,中国人的邮箱名称里含有数字比较多,而外国人邮箱名称里含有数字比较少.为了研究国籍和邮箱名称里含有数字的关系,小明收集了124个邮箱名称,其中中国人的64个,外国人的60个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.(1)根据以上数据建立2×2列联表;(2)他发现在这组数据中,外国人邮箱里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关联,你能依据α=0.05的独立性检验帮他判断一下吗?附:α0.100.050.01小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.comxα2.7063.8416.635B能力级关键提升练8.某研究所为了检验某血清预防感冒的作用,把500名使用了该血清的志愿者与另外500名未使用该血清的志愿者一年中的感冒记录进行比较,零假设为H0:这种血清与预防感冒之间无关联.利用2×2列联表计算得χ2≈3.918.下列叙述中正确的是()A.依据α=0.05的独立性检验认为这种血清与预防感冒之间有关联B.若有人未使用该血清,则他一年中有95%的可能性得感冒C.这种血清预防感冒的有效率为95%D.这种血清预防感冒的有效率为5%9.(多选题)针对时下流行的某社交平台,某高校对学生性别和喜欢该平台是否有关联进行了一次调查,其中被调查的男生、女生人数相同,男生喜欢该平台的人数占男生人数的45,女生喜欢该平台的人数占女生人数的35.零假...