小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com题型专项练3客观题12+4标准练(C)一、单项选择题1.复数z=1-i31+2i的虚部为()A.-15iB.15iC.-15D.152.已知集合M={x|lg(x-1)≤0},N={x||x|<2},则M∪N=()A.⌀B.(1,2)C.(-2,2]D.{-1,0,1,2}3.4位优秀党务工作者到3个基层单位进行百年党史宣讲,每人宣讲1场,每个基层单位至少安排1人宣讲,则不同的安排方法数为()A.81B.72C.36D.64.若向量a,b满足|a|=2,|b|=❑√3,且(a-b)⊥(2a+3b),则a与b夹角的余弦值为()A.❑√112B.❑√336C.❑√215D.❑√365.核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时监测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量Xn与扩增次数n满足lgXn=nlg(1+p)+lgX0,其中p为扩增效率,X0为DNA的初始数量.已知某被测标本DNA扩增10次后,数量变为原来的100倍,则该样本的扩增效率p约为()(参考数据:100.2≈1.585,10-0.2≈0.631)A.0.369B.0.415C.0.585D.0.6316.某地区为落实乡村振兴战略,帮助农民脱贫致富,引入一种特色农产品种植,该农产品上市时间仅能维持5个月,预测上市初期和后期会因产品供应不足使价格持续上涨,而中期又将出现供大于求使价格连续下跌.经研究其价格模拟函数为f(t)=t(t-3)2+4(0≤t≤5,其中t=0表示5月1日,t=1表示6月1日,以此类推).为保护农户的经济效应,当地政府计划在价格下跌时积极拓宽外销,请你预测该农产品价格下跌的月份为()A.5月和6月B.6月和7月C.7月和8月D.8月和9月7.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,若双曲线C上存在点P满足∠F2PO=2∠F1PO=π3,则该双曲线的离心率为()A.❑√3+1B.❑√2+1C.❑√3D.❑√2小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com8.已知函数f(x)的定义域为R,f(5)=4,f(x+3)是偶函数,任意x1,x2∈[3,+∞)满足f(x1)-f(x2)x1-x2>0,则不等式f(3x-1)<4的解集为()A.(23,3)B.(-∞,23)∪(2,+∞)C.(2,3)D.(23,2)二、多项选择题9.已知函数f(x)=cos(x+π6),则()A.2π为f(x)的一个周期B.f(x)的图象关于直线x=4π3对称C.f(x)在区间(π2,π)内单调递减D.f(x+π)的一个零点为π310.已知lnx>lny>0,则下列结论正确的是()A.1x<1yB.(13)x>(13)yC.logyx>logxyD.x2+4y(x-y)>811.如图,在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.D1D⊥平面AEFB.A1G∥平面AEFC.异面直线A1G与EF所成角的余弦值为❑√1010D.点G到平面AEF的距离是点C到平面AEF的距离的2倍12.如图,在数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和,则下列说法正确的是()1357911…48121620…小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com12202836……A.第6行第1个数为192B.第10行的数从左到右构成公差为210的等差数列C.第10行前10个数的和为95×29D.数表中第2021行第2021个数为6061×22020三、填空题13.在一次期中考试中某学校高三全部学生的数学成绩X服从正态分布N(μ,σ2),若P(X≥90)=0.5,且P(X≥110)=0.2,则P(X≤70)=.14.已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且四边形ABCD为正方形,则|m-n|的值为.15.如图,O是滑槽AB的中点,短杆ON可绕点O转动,长杆MN通过点N处的铰链与ON连接,MN上的栓子D可沿滑槽AB滑动.当点D在滑槽AB内作往复移动时,带动点N绕点O转动,点M也随之运动.记点N的运动轨迹为C1,点M的运动轨迹为C2.若ON=DN=1,MN=3,过轨迹C2上的点P向轨迹C1作切线,则切线长的最大值为.16.阿基米德在他的著作《论球和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球(与圆柱的两底面及侧面都相切的球)的体积与圆柱的体积之比等于它们的表面积之比.可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比,则该比值的最大值为.题型专项练3客观题12+4标准练(C)1.C解析因为z=1-i31+...