小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com专题过关检测三数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{an}中,a1=2,an+1-an-2=0,则a5+a6+…+a14=()A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{an}的各项均为正数,且a3=9,则log3a1+log3a2+log3a3+log3a4+log3a5=()A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{an}的前n项和为Sn,若S10S5=12,则S15S5=()A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c键到下一个c1键的8个白键与5个黑键(如图),从左至右依次为:c,#c,d,#d,e,f,#f,g,#g,a,#a,b,c1的音频恰成一个公比为12√2的等比数列的原理,也即高音c1的频率正好是中音c的2倍.已知标准音a的频率为440Hz,则频率为220❑√2Hz的音名是()A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{an}的前n项和Sn=n2,设数列{1anan+1}的前n项和为Tn,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.comA.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3928B.4024C.4920D.49248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{an}的前n项和Sn=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{an}的前n项和为Sn,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.Sn的最小值为S3C.S1=S6D.Sn存在最大值11.已知数列{an}是等差数列,其前30项和为390,a1=5,bn=2an,对于数列{an},{bn},下列选项正确的是()A.b10=8b5B.{bn}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,xk,2.记an=1+x1+x2+…+xk+2,数列{an}的前n项和为Sn,则()A.k+1=2nB.an+1=3an-3C.an=32(n2+3n)D.Sn=34(3n+1+2n-3)三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{an}中,若a2,a2020为方程x2-10x+16=0的两根,则a1+a1011+a2021等于.小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com小、初中、高中各卷知文案合同学种试真题识归纳PPT等免下费载www.doc985.com14.(2021·江苏如东检测)已知数列{an}的前n项和为Sn,且Sn=2an-2,则数列{log2an}的前n项和Tn=.15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}的前n项和为.16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n次,那么∑k=1nSk=dm2.四、解答题:本题共6小题,共7...