小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com微专题7以数列为载体的情景问题一、单项选择题1.[2022·江南京模苏拟]2022年4月26日下午,神州十三号载人飞船返回舱在京完成开舱.据科学计算,运载“神十三”的“长征二号”F遥十三运载火箭,在点火第一秒钟通过的路程为2千米,以后每秒钟通过的路程都增加2千米,在达到离地面380千米的高度时,火箭与飞船分离,则这一过程需要的时间大约是()A.10秒B.13秒C.15秒D.19秒2.[2022·宁葫芦二模辽岛]朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第二个音的频率为f1,第八个音的频率为f2.则=()A.B.C.D.43.[2022·全乙卷国]嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:b1=1+,b2=1+,b3=1+,…,依此类推,其中αk∈N*(k=1,2,…).则()A.b1<b5B.b3<b8C.b6<b2D.b4<b74.[2022·新高考Ⅱ卷]图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为=0.5,=k1,=k2,=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.95.[2022·福建漳州一模]我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、对角线的三个数之和都等于15,如图所示.一般地,将连续的正整数1,2,3,…,n2填入n×n个方格中,使得每行、每列、每小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com条对角线上的数的和相等,这个正方形叫做n阶幻方.记n阶幻方的数的和即方格内的所有数的和为Sn,如图三阶幻方记为S3=45,那么S9=()A.3321B.361C.99D.336.[2022·河北家口一模张]意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,即an+2=an+1+an(n∈N*),后来人们把这样的一列数组成的数列{an}称为“斐波那契数列”.记a2022=t,则a1+a3+a5+…+a2021=()A.t2B.t-1C.tD.t+17.[2022·福建田三模莆]芝诺是古希腊著名的哲学家,他曾提出一个著名的悖论,史称芝诺悖论.芝诺悖论的大意是:“阿喀琉斯是古希腊神话中善跑的英雄,在他和乌龟的竞赛中,他的速度为乌龟的十倍,乌龟在他前面100米爬,他在后面追,但他不可能追上乌龟.原因是在竞赛中,追者首先必须到达被追者的出发点,当阿喀琉斯追了100米时,乌龟已经向前爬了10米.于是一个新的起点产生了;阿喀琉斯必须继续追,而当他追完乌龟爬的这10米时,乌龟又向前爬了1米,阿喀琉斯只能再追这1米.就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,只要乌龟不停地奋力向前爬,阿喀琉斯就永远追不上乌龟.”试问在阿喀琉斯与乌龟的竞赛中,当阿喀琉斯与乌龟相距0.001米时,乌龟共爬行了()A.11.111米B.11.11米C.19.99米D.111.1米8.[2022·湖南岳二模阳]德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天赋,10岁时,他在进行1+2+3+…+100的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知某数列通项an=,则a1+a2+…+a100=()A.98B.99C.100D.101二、多项选择题9.[2022...