小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2024年高考押题预测卷01【新高考卷】数学·参考答案第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。12345678BCDCBAAD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACABCACD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。12.13.14.四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。15.【详解】(1)在中,,,则,,在中,由正弦定理得,.(2)在和中,由余弦定理得,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com得,又,得,则,,四边形ABCD的面积.16.【详解】(1)当时,,则,令,得或,由于,所以当,,在单调递减,所以当,,在单调递增,所以在时取到极小值,且,又因为,,综上,函数在上的最大值为,最小值为.(2)因为,所以,当,即时,,在单调递增,当,即时,令,则,所以当,,在单调递增,当,,在单调递减,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当,,在单调递增.综上所述,当时,在单调递增,当时,在,单调递增,在单调递减.17.【详解】(1)参与调查的人员认知度分值的平均数为,方差为.(2)将这8个字随机排列,不同的排列方法有种,相同的字分别相邻的不同情况有种,故参与者可以获得奖励的概率.若2人同时参与游戏,则恰好有1人获奖的概率为.(3)根据分层抽样的规则可知,A类抽取4人,B类抽取12人,C类抽取2人,D类抽取2人,则X的所有可能取值为0,1,2,则,,,∴X的分布列为X012P∴X的数学期望为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com18.【详解】(1)不妨设,因为平面平面,故,在中,,由余弦定理,,得,故,则,因为平面,所以平面,而平面,所以平面平面;(2)由(1)知,两两垂直,如图所示,以为坐标原点,建立的空间直角坐标系,则,故,,所以,设,则,即,所以;设为平面的一个法向量,则,令,则,所以,因为轴平面,则可取为平面的一个法向量,设平面与平面的夹角为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,解得,故.19.【详解】(1)椭圆的标准方程为,则.当直线的倾斜角为时,分别为椭圆的左、右顶点,此时两切线平行无交点,不符合题意,所以直线的倾斜角不为,设直线,由,得,则,所以,又椭圆在点处的切线方程为,在点处的切线方程为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由,得,代入,得,所以,则点到直线的距离,所以,设,则,令,则,所以在上单调递增,所以当,即时,的面积最小,最小值是;(2)椭圆的焦点在轴上,长半轴长为,短半轴长为1,椭球由椭圆及其内部绕轴旋转而成旋转体,构造一个底面半径为1,高为的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体,当平行于底面的截面与圆锥顶点距离为时,设小圆锥底面半径为,则,即,所以新几何体的截面面积为,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com把代入,得,解得,所以半椭球的截面面积为,由祖暅原理,得椭球的体积.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com