专题12导数与极限第一辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx本文件免费下载 【共23页】

专题12导数与极限第一辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题12导数与极限第一辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
专题12导数与极限第一辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题12导数与极限第一辑1.【2021年福建预赛】若关于x的不等式(x−2)ex<ax+1有且仅有三个不同的整数解,则整数a的最小值为.【答案】3【解析】设f(x)=(x−2)ex,g(x)=ax+1.则f&#039;(x)=(x−1)ex,x<1时,f&#039;(x)<0;x>1时,f&#039;(x)>0.因此,f(x)在区间(−∞,1)上递减,在区间(1,+∞)上递增:且x<2时,f(x)<0;x>2时,f(x)>0.由此作出f(x)的草图如图所示.又g(x)的图像是过点(0,1)的直线,结合图像可知a>0.由于a>0时,f(0)=−2<g(0)=1;f(1)=−e<g(1)=a+1;f(2)=0<g(2)=2a+1,因此,0,1,2是不等式(x−2)ex<ax+1的三个整数解.由于不等式(x−2)ex<ax+1有且仅有三个不同的整数解,所以¿,即¿.经检验,a=3符合要求,所以,符合条件的a的最小值为3.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.【2019年贵州预赛】已知函数f(x)=(ex−e−x)⋅x3,若m满足f(log2m)+f(log0.5m)⩽2(e2−1e).则实数m的取值范围是.【答案】[12,2]【解析】由f(x)=(ex−e−x)⋅x3⇒f(−x)=f(x),且x∈(0,+∞)时,f(x)是增函数.又由f(log2m)+f(log0,5m)≤2(e2−1e)⇒f(log2m)≤f(1).所以|log2m|≤1⇒−1≤log2m≤1⇒12≤m≤2.即m的取值范围是[12,2].3.【2018年广西预赛】若定义在R上的函数f(x)满足f&#039;(x)−2f(x)−4>0,f(0)=−1,则不等式f(x)>e2x−2的解为___________.【答案】x>0【解析】构造函数g(x)=e−2x[f(x)+2],则g(0)=1.由g&#039;(x)=e−2x[f&#039;(x)−2f(x)−4]>0可知g(x)在(−∞,+∞)内单调递增,从而有g(x)>1⇔x>0.故f(x)>e2x−2⇔x>0.4.【2018年甘肃预赛】已知函数f(x)=x3+sinx(x∈R),函数g(x)满足g(x)+g(2−x)=0(x∈R),若函数h(x)=f(x−1)−g(x)恰有2019个零点,则所有这些零点之和为______.【答案】2019【解析】易知函数f(x)=x3+sinx为奇函数,从而f(x−1)的图象关于(1,0)点对称.函数g(x)+g(2−x)=0,可知g(x)的图象也关于(1,0)点对称.由此h(x)的图象关于(1,0)点对称,从而这2019个零点关于点(1,0)对称,由于h(1)=f(0)−g(1)=0⇒x=1是h(x)的一个零点,其余2018个零点首尾结合,两两关于(1,0)点对称,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com和为2018,故所有这些零点之和为2019.5.【2018年四川预赛】设直线y=kx+b与曲线y=x3−x有三个不同的交点A、B、C,且|AB|=|BC|=2,则k的值为______.【答案】1【解析】曲线关于点(0,0)对称,且|AB|=|BC|=2,所以直线y=kx+b必过原点,从而b=0.设A(x,y),则¿由此得x=❑√k+1,y=k❑√k+1,代入得(k+1)+k2(k+1)=4,即(k−1)(k2+2k+3)=0,解得k=1.故答案为:16.【2017年广西预赛】设函数f(x)在R上存在导数f&#039;(x),对任意的x∈R有f(x)+f(−x)=x2,在(0,+∞)上f&#039;(x)>x.若f(1+a)−f(1−a)≥2a,则实数a的范围是.【答案】a≥0【解析】提示:由题意得f&#039;(x)>x,构造函数g(x)=f(x)−12x2,则g&#039;(x)=f&#039;(x)−x>0.从而g(x)在(0,+∞)上单调递增.由条件f(x)+f(−x)=x2得g(x)+g(−x)=0,则g(x)是奇函数.因为g(x)在R上单调递增,由f(1+a)−f(1−a)≥2a知g(1+a)−g(1−a)≥0,g(1+a)≥g(1−a),所以1+a≥1−a解得a≥0.7.【2017年湖南预赛】设函数f(x)是定义在(−∞,0)上的可导函数,其导函数为f&#039;(x),且有2f(x)+xf&#039;(x)>x2,则不等式(x+2017)2f(x+2017)−f(−1)>0的解集为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(−∞,−2018)【解析】提示:将不等式(x+2017)2f(x+2017)−f(−1)>0化为(x+2017)2f(x+2017)>(−1)2f(−1),①构造F(x)=x2f(x),使得①式化为F(x+2017)>F(−1),②因为F&#039;(x)=2xf(x)+x2f&#039;(x),由已知条件2f(x)+xf&#039;(x)>x2,两边同乘以x,可得F&#039;(x)=2xf(x)+x2f&#039;(x)<x3<0(因x∈(−∞,0)).所以,F(x)在(−∞,0)上是减函数,不等式②化为x+2017←...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2001年河南高考数学真题及答案.doc
2001年河南高考数学真题及答案.doc
免费
28下载
2023《微专题·小练习》·数学·文科·L-2专练5.docx
2023《微专题·小练习》·数学·文科·L-2专练5.docx
免费
14下载
2015年高考数学试卷(文)(陕西)(解析卷).doc
2015年高考数学试卷(文)(陕西)(解析卷).doc
免费
0下载
高中数学·必修第一册(北师大版)课时作业WORD  课时作业(十一).doc
高中数学·必修第一册(北师大版)课时作业WORD 课时作业(十一).doc
免费
14下载
精品解析:上海市黄浦区2023届高三上学期一模数学试题(解析版).docx
精品解析:上海市黄浦区2023届高三上学期一模数学试题(解析版).docx
免费
0下载
二轮专项分层特训卷··高三数学·理科热点(五).doc
二轮专项分层特训卷··高三数学·理科热点(五).doc
免费
10下载
2004年高考数学真题(文科)(陕西自主命题).doc
2004年高考数学真题(文科)(陕西自主命题).doc
免费
17下载
高中数学·必修第二册·湘教版课时作业WORD  课时作业(十二).docx
高中数学·必修第二册·湘教版课时作业WORD 课时作业(十二).docx
免费
3下载
高中2024版考评特训卷·数学·文科【统考版】点点练 35.docx
高中2024版考评特训卷·数学·文科【统考版】点点练 35.docx
免费
0下载
2023《微专题·小练习》·数学·文科·L-2专练28.docx
2023《微专题·小练习》·数学·文科·L-2专练28.docx
免费
21下载
2000年新疆高考理科数学真题及答案.doc
2000年新疆高考理科数学真题及答案.doc
免费
25下载
辽宁省阜新市第二高级中学2022-2023学年高二下学期第一次阶段考试数学试题.pdf
辽宁省阜新市第二高级中学2022-2023学年高二下学期第一次阶段考试数学试题.pdf
免费
14下载
2021年高考数学试卷(天津)(解析卷).doc
2021年高考数学试卷(天津)(解析卷).doc
免费
0下载
2013年高考重庆理科数学试题及答案(精校版).doc
2013年高考重庆理科数学试题及答案(精校版).doc
免费
22下载
二轮专项分层特训卷··高三数学·文科平面向量、三角函数与解三角形(2).doc
二轮专项分层特训卷··高三数学·文科平面向量、三角函数与解三角形(2).doc
免费
11下载
高中2022·微专题·小练习·数学·理科【统考版】专练50.docx
高中2022·微专题·小练习·数学·理科【统考版】专练50.docx
免费
0下载
2002年海南高考文科数学真题及答案.doc
2002年海南高考文科数学真题及答案.doc
免费
12下载
2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版).doc
2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版).doc
免费
13下载
《五年高考题分类训练》数学(2019-2023)专题十 计数原理.docx
《五年高考题分类训练》数学(2019-2023)专题十 计数原理.docx
免费
23下载
2014年全国统一高考数学试卷(文科)(新课标ⅰ).doc
2014年全国统一高考数学试卷(文科)(新课标ⅰ).doc
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群