小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专练53条件概率、全概率公式、相互独立事件的概率[基础强化]一、选择题1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现反面”为事件B,则P(B|A)=()A.B.C.D.2.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”;则P(B|A)=()A.B.C.D.3.打靶时甲每打10次,可中靶8次;乙每打10次可中靶7次,若两人同时射击一个目标,则他们都中靶的概率是()A.B.C.D.4.[2023·山栖霞模东拟]一道竞赛题,A,B,C三人单独解出的概率依次为,,,则三人独立解答仅有1人解出的概率为()A.B.C.D.15.[2023·山南模东济拟]已知某种生物由出生算起活到20岁的概率是0.8,活到25岁的概率是0.4,则现为20岁的这种动物活到25岁的概率是()A.0.6B.0.5C.0.4D.0.326.5G指的是第五代移动通信技术,是最新一代蜂窝移动通信技术.某公司研发5G项目时遇到一项技术难题,由甲、乙两个部门分别独立攻关,已知甲部门攻克该技术难题的概率为0.8,乙部门攻克该技术难题的概率为0.7,则该公司攻克这项技术难题的概率为()A.0.56B.0.86C.0.94D.0.967.[2023·全甲卷国(理)]某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A.0.8B.0.6C.0.5D.0.48.某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为,,,则汽车在这三处因遇红灯而停车一次的概率为()A.B.C.D.9.(多选)[2023·新课标Ⅱ卷]在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comD.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率二、填空题10.某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8,则王同学第2天去A餐厅用餐的概率为________.11.已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.12.一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.[能力提升]13.[2021·新高考Ⅰ卷]有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立14.(多选)从甲口袋内摸出1个白球的概率是,从乙口袋内摸出1个白球的概率是,如果从两个口袋内各摸出一个球,那么下列说法正确的是()A.2个球都是白球的概率为B.2个球都不是白球的概率为C.2个球不都是白球的概率为D.2个球恰好有一个球是白球的概率为15.[2022·全乙卷国(理...