小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专练65离散型随机变量的均值与方差、正态分布命题范围:离散型机量的均、方差及正分布.随变值态[基础强化]一、选择题1.[2021·唐山摸底]随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=0.2,P(2<ξ<6)=0.6,则μ=()A.6B.5C.4D.32.已知X+Y=8,若X~B(10,0.6),则E(Y)和D(Y)分别是()A.6和2.4B.2和2.4C.2和5.6D.6和5.63.设随机变量X~N(2,4),若P(X>a+2)=P(X<2a-3),则实数a的值为()A.1B.C.5D.94.已知离散型随机变量X的分布列如下:X135P0.5m0.2则E(X)=()A.1B.0.6C.2.44D.2.45.[2021·吉林春一中高三长测试]随机变量X的分布列如下表,且E(X)=2,则D(2X-3)=()X02aPpA.2B.3C.4D.56.[2021·广广雅中高三东学测试]口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以X表示取出的球的最小号码,则E(X)=()A.0.45B.0.5C.0.55D.0.67.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.38.设X~N(μ1,σ),Y~N(μ2,σ),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)9.设随机变量X服从正态分布N(0,1),若P(X>1)=P,则P(-1<X<0)=()A.+PB.1-PC.1-2PD.-P二、填空题10.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.11.一个正四面体ABCD的四个顶点上分别标有1分,2分,3分和4分,往地面抛掷一次记不在地面上的顶点的分数为X,则X的均值为________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12.在我校2018届高三10月份高考调研中,理科数学成绩X~N(90,σ2)(σ>0),统计结果显示P(60≤X≤120)=0.8,假设我校参加此次考试的有780人,那么估计此次考试中,我校成绩高于120分的有________人.[能力提升]13.[2021·天津一中高三测试]设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回地抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,X表示三次中红球被摸中的次数,每个小球被抽取的几率相同,每次抽取相对独立,则方差D(X)=()A.2B.1C.D.14.[2021·广西柳州高三测试]甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止,设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E(ξ)为()A.B.C.D.15.2012年国家开始实行法定节假日高速公路免费通行政策,某收费站在统计了2021年清明节前后车辆通行数量,发现该站近几天每天通行车辆的数量ξ服从正态分布ξ~N(1000,σ2),若P(ξ>1200)=a,P(800<ξ<1000)=b,则+的最小值为________.16.已知随机变量ξ的分布列如下表,则随机变量ξ的方差D(ξ)的最大值为________.ξ012Py0.4x小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com