小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§10.4随机事件与概率考试要求1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.3.掌握古典概型及其计算公式,能计算古典概型中简单随机事件的概率.知识梳理1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E的每个可能的称为样本点,常用ω表示.全体样本点的集合称为试验E的,常用Ω表示.②有限样本空间:如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.(2)随机事件①定义:将样本空间Ω的称为随机事件,简称事件.②表示:一般用大写字母A,B,C,…表示.③随机事件的极端情形:、.2.两个事件的关系和运算含义符号表示包含关系若A发生,则B一定发生相等关系B⊇A且A⊇B并事件(和事件)A∪B或A+B交事件(积事件)A与B同时发生互斥(互不相容)A与B不能同时发生A∩B=∅互为对立A与B有且仅有一个发生3.古典概型的特征(1)有限性:样本空间的样本点只有;(2)等可能性:每个样本点发生的可能性.4.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)==.其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.概率的性质性质1:对任意的事件A,都有P(A)≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;性质3:如果事件A与事件B互斥,那么P(A∪B)=;性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=;性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1;性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=.6.频率与概率(1)频率的稳定性一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐事件A发生的概率P(A),我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用可以用频率fn(A)估计概率P(A).常用结论1.当随机事件A,B互斥时,不一定对立;当随机事件A,B对立时,一定互斥,即两事件互斥是对立的必要不充分条件.2.若事件A1,A2,…,An两两互斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件生的率率是相同的.发频与概()(2)事件的和事件生是指事件至少有一生.两个发这两个个发()(3)-从3,-2,-1,0,1,2中任取一,取到的小于个数数0不小于与0的可能性相同.()(4)若A∪B是必然事件,则A与B是立事件.对()教材改编题1.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶2.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175cm的概率为()A.0.2B.0.3C.0.7D.0.83.(2022·全乙卷国)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型一随机事件命题点1随机事件间关系的判断例1(1)(多选)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A={两弹都击中飞机},事件B={两弹都没击中飞机},事件C={恰有一弹击中飞机},事件D={至少有一弹击中飞机},则下列关系正确的是()A.A∩D=∅B.B∩D=∅C.A∪C=DD.A∪B=B∪D(2)从装有十个红球和十个白球的罐子里任取两球,下列情况中是互斥而不对立的两个事件的是()A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球听...