小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§1.1集合考试要求1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号NN*(或N+)ZQR2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作AB(或BA).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com表示运算集合语言图形语言记法并集{x|x∈A,或x∈B}A∪B交集{x|x∈A,且x∈B}A∩B补集{x|x∈U,且x∉A}∁UA常用结论1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.2.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)集合{x∈N|x3=x},用列法表示举为{-1,0,1}.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若1∈{x2,x},则x=-1或x=1.(×)(4)任意集合对A,B,都有(A∩B)⊆(A∪B).(√)教材改编题1.(2022·新高考全国Ⅱ)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B等于()A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B解析由|x-1|≤1,得-1≤x-1≤1,解得0≤x≤2,所以B={x|0≤x≤2},所以A∩B={1,2},故选B.2.下列集合与集合A={2022,1}相等的是()A.(1,2022)B.{(x,y)|x=2022,y=1}C.{x|x2-2023x+2022=0}D.{(2022,1)}答案C解析(1,2022)表示一点,不是集合,个A不符合意;题集合{(x,y)|x=2022,y=1}的元素是点,集合与A不相等,B不符合意;题{x|x2-2023x+2022=0}={2022,1}=A,故C符合意;题集合{(2022,1)}的元素是点,集合与A不相等,D不符合意.题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2},则A∪B=________,∁U(A∩B)=________.答案{x|x≥-1}{x|x<2或x≥3}解析因为A={x|-1≤x<3},B={x|2x-4≥x-2}={x|x≥2},所以A∪B={x|x≥-1},A∩B={x|2≤x<3},∁U(A∩B)={x|x<2或x≥3}.题型一集合的含义与表示例1(1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则集合A∩B的元素个数为()A.0B.1C.2D.3答案C解析如,函图数y=x与y=x2的象有交点,图两个故集合A∩B有元素.两个(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为()A.1B.1或0C.0D.-1或0答案C解析 -1∈A,若a-2=-1,即a=1,时A={1,-1,-1},不符合集合元素的互性;异若a2-a-1=-1,即a=1(舍去)或a=0,时A={1,-2,-1},故a=0.思维升华解集合含的有三点:一是确定成集合的元素;二是确定元素的限决义问题关键构制件;三是根据元素的特征条(足的件满条)造系式解相.构关决应问题跟踪训练1(1)(多选)若集合M={x|x-2<0,x∈N},则下列四个命题中,错误的命题是()A.0∉MB.{0}∈MC.{1}⊆MD.1⊆M小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com答案ABD解析于对A,因为M={x|x-2<0,x∈N},所以0∈M,所以A;错...