2024年高考生物一轮复习讲义(新人教版)第1节 直线的方程.doc本文件免费下载 【共13页】

2024年高考生物一轮复习讲义(新人教版)第1节 直线的方程.doc
2024年高考生物一轮复习讲义(新人教版)第1节 直线的方程.doc
2024年高考生物一轮复习讲义(新人教版)第1节 直线的方程.doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第1节直线的方程考试要求1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们以x轴为基准,x轴正向与直线l向上的方向之间所成的角α叫做直线l的倾斜角;(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0°;(3)范围:直线的倾斜角α的取值范围是{α|0°≤α<180°}.2.直线的斜率(1)定义:我们把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tan__α.(2)计算公式①经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率k=.②设P1(x1,y1),P2(x2,y2)(其中x1≠x2)是直线l上的两点,则向量P1P2=(x2-x1,y2-y1)以及与它平行的向量都是直线的方向向量.若直线l的斜率为k,它的一个方向向量的坐标为(x,y),则k=.3.直线方程的五种形式名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点=与两坐标轴均不垂直的小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com直线截距式纵、横截距+=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)所有直线1.直线的倾斜角α和斜率k之间的对应关系:α00<α<<α<πk0k>0不存在k<02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.1.思考辨析(在括号内打“√”或“×”)(1)直线的倾斜角越大,其斜率就越大.()(2)直线的斜率为tanα,则其倾斜角为α.()(3)斜率相等的两直线的倾斜角不一定相等.()(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)·(x2-x1)=(x-x1)(y2-y1)表示.()答案(1)×(2)×(3)×(4)√解析(1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°.(3)两直线的斜率相等,则其倾斜角一定相等.2.(易错题)直线xtan60°+y-2=0的倾斜角为()A.30°B.60°C.120°D.150°答案C解析设直线倾斜角为α, y=-xtan60°+2,∴直线的斜率为k=-tan60°=-. 0°≤α<180°,∴α=120°.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(多选)(2022·烟台调研)下列说法正确的是()A.有的直线斜率不存在B.若直线l的倾斜角为α,且α≠90°,则它的斜率k=tanαC.若直线l的斜率为1,则它的倾斜角为D.截距可以为负值答案ABD4.(2022·沈阳模拟)直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足()A.ab>0,bc<0B.ab>0,bc>0C.ab<0,bc>0D.ab<0,bc<0答案A解析由于直线ax+by+c=0同时要经过第一、二、四象限,故斜率小于0,在y轴上的截距大于0,故故ab>0,bc<0.5.(易错题)经过点(4,1),且在两坐标轴上截距相等的直线l的方程为________________.答案x-4y=0或x+y-5=0解析当直线过原点时,直线方程为y=x,即x-4y=0.当直线不过原点时,设直线方程为+=1(a≠0),代入(4,1),+=1,∴a=5,故直线方程是x+y-5=0.6.(2021·上海卷)直线x=-2与直线x-y+1=0的夹角为________.答案解析由于直线x=-2的倾斜角为,直线x-y+1=0即直线y=x+1,其倾斜角为,故夹角为.考点一直线的倾斜角与斜率例1(1)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com答案(-∞,-]∪[1,+...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023年高考生物真题(浙江自主命题)【1月】(原卷版).docx
2023年高考生物真题(浙江自主命题)【1月】(原卷版).docx
免费
25下载
高中2022·微专题·小练习·生物【统考版】专练8.docx
高中2022·微专题·小练习·生物【统考版】专练8.docx
免费
0下载
2021年高考生物试卷(天津)(空白卷).doc
2021年高考生物试卷(天津)(空白卷).doc
免费
0下载
2023《微专题·小练习》·生物专练91 细胞的能量供应和利用综合练.docx
2023《微专题·小练习》·生物专练91 细胞的能量供应和利用综合练.docx
免费
2下载
2014年北京市高考生物试卷往年高考真题.doc
2014年北京市高考生物试卷往年高考真题.doc
免费
0下载
2022年高考生物真题(浙江自主命题)【6月】(原卷版).docx
2022年高考生物真题(浙江自主命题)【6月】(原卷版).docx
免费
27下载
高中生物·必修1课后分层检测(单选)  课后分层检测案18.docx
高中生物·必修1课后分层检测(单选) 课后分层检测案18.docx
免费
26下载
高中2023《微专题·小练习》·生物·新教材·XL-7专练43 基因在染色体上.docx
高中2023《微专题·小练习》·生物·新教材·XL-7专练43 基因在染色体上.docx
免费
0下载
2021年高考生物试卷(全国乙卷)(空白卷).doc
2021年高考生物试卷(全国乙卷)(空白卷).doc
免费
0下载
2024年高考押题预测卷生物(全国卷新教材02)(全解全析).docx
2024年高考押题预测卷生物(全国卷新教材02)(全解全析).docx
免费
6下载
2024年高考生物一轮复习讲义(新人教版)2024年高考生物一轮复习(新人教版) 第2单元 第3课时 细胞核的结构和功能.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考生物一轮复习(新人教版) 第2单元 第3课时 细胞核的结构和功能.docx
免费
14下载
2024年高考生物一轮复习讲义(新人教版)第9单元 第9课时 人与环境.docx
2024年高考生物一轮复习讲义(新人教版)第9单元 第9课时 人与环境.docx
免费
10下载
高考生物专题07 细胞代谢的综合(解析卷).docx
高考生物专题07 细胞代谢的综合(解析卷).docx
免费
0下载
2024版《大考卷》全程考评特训卷·生物学【新教材】(河北省专用)仿真模拟冲刺标准练(四).docx
2024版《大考卷》全程考评特训卷·生物学【新教材】(河北省专用)仿真模拟冲刺标准练(四).docx
免费
8下载
2015年全国统一高考生物试卷(新课标ⅱ).doc
2015年全国统一高考生物试卷(新课标ⅱ).doc
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第5单元 第4课时 自由组合定律的发现及应用.docx
2024年高考生物一轮复习讲义(新人教版)第5单元 第4课时 自由组合定律的发现及应用.docx
免费
1下载
2022·微专题·小练习·生物【统考版】专练26.docx
2022·微专题·小练习·生物【统考版】专练26.docx
免费
1下载
2007年天津市高考生物试卷解析版   .doc
2007年天津市高考生物试卷解析版 .doc
免费
2下载
2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第8章 §8.4 直线与圆、圆与圆的位置关系.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第8章 §8.4 直线与圆、圆与圆的位置关系.docx
免费
23下载
2023届山东省枣庄市高三(二模)丨生物.pdf
2023届山东省枣庄市高三(二模)丨生物.pdf
免费
8下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群