小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第5节椭圆考试要求1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.1.椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,焦距的一半称为半焦距.其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程+=1(a>b>0)+=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=∈(0,1)a,b,c的关c2=a2-b2小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com系1.若点P在椭圆上,F为椭圆的一个焦点,则(1)b≤|OP|≤a;(2)a-c≤|PF|≤a+c.2.焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫作焦点三角形,r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中:(1)当r1=r2时,即点P的位置为短轴端点时,θ最大;(2)S=b2tan=c|y0|,当|y0|=b时,即点P的位置为短轴端点时,S取最大值,最大值为bc.3.焦点弦(过焦点的弦):焦点弦中通径(垂直于长轴的焦点弦)最短,弦长lmin=.4.AB为椭圆+=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则直线AB的斜率kAB=-.1.思考辨析(在括号内打“√”或“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(4)+=1(a>b>0)与+=1(a>b>0)的焦距相同.()答案(1)×(2)×(3)√(4)√解析(1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.(2)因为e===,所以e越大,则越小,椭圆就越扁.2.(2021·重庆诊断)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为B.焦距为C.短轴长为D.离心率为答案D解析把椭圆方程16x2+4y2=1化为标准方程可得+=1,所以a=,b=,c=,则长轴长2a=1,焦距2c=,短轴长2b=,离心率e==,故选D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2021·新高考Ⅰ卷)已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为()A.13B.12C.9D.6答案C解析由椭圆C:+=1,得|MF1|+|MF2|=2×3=6,则|MF1|·|MF2|≤=32=9,当且仅当|MF1|=|MF2|=3时等号成立.4.(2022·广东六校联考)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若线段AB的中点坐标为(1,-1),则椭圆E的方程为()A.+=1B.+=1C.+=1D.+=1答案D解析由题意可知,椭圆E的半焦距c=3,所以a2-b2=9①.因为直线AB经过点(1,-1),F(3,0),所以kAB==.设点A,B的坐标分别为(x1,y1),(x2,y2),则两式相减,得+=0.因为线段AB的中点坐标为(1,-1),所以x1+x2=2,y1+y2=-2,且kAB==,所以=,即a2=2b2②.由①②,得b2=9,a2=18,所以椭圆E的方程为+=1.5.(易错题)已知椭圆+=1(m>0)的离心率e=,则m的值为________.答案3或解析若a2=5,b2=m,则c=,由=,即=,解得m=3.若a2=m,b2=5,则c=.由=,即=,解得m=.综上,m=3或.6.若方程+=1表示椭圆,则m满足的条件是___________________.答案解析由方程+=1表示椭圆,知解得m>且m≠1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985....