2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第10章 §10.7 二项分布、超几何分布与正态分布.docx本文件免费下载 【共14页】

2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第10章 §10.7 二项分布、超几何分布与正态分布.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第10章 §10.7 二项分布、超几何分布与正态分布.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考数学一轮复习(新高考版) 第10章 §10.7 二项分布、超几何分布与正态分布.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§10.7二项分布、超几何分布与正态分布考试要求1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态曲线了解正态分布的概念,并进行简单应用.知识梳理1.二项分布(1)伯努利试验只包含两个可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.(2)二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).(3)两点分布与二项分布的均值、方差①若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).②若X~B(n,p),则E(X)=np,D(X)=np(1-p).2.超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.3.正态分布(1)定义若随机变量X的概率分布密度函数为f(x)=,x∈R,其中μ∈R,σ>0为参数,则称随机变量X服从正态分布,记为X~N(μ,σ2).(2)正态曲线的特点①曲线是单峰的,它关于直线x=μ对称;②曲线在x=μ处达到峰值;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com③当|x|无限增大时,曲线无限接近x轴.(3)3σ原则①P(μ-σ≤X≤μ+σ)≈0.6827;②P(μ-2σ≤X≤μ+2σ)≈0.9545;③P(μ-3σ≤X≤μ+3σ)≈0.9973.(4)正态分布的均值与方差若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.常用结论1.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.2.超几何分布有时也记为X~H(n,M,N),其均值E(X)=,D(X)=.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)点分布是二分布两项当n=1的特殊情形.时(√)(2)若X表示n次重抛复掷1枚骰子出点是现数3的倍的次,数数则X服二分布.从项(√)(3)装有从3球、个红3白球的盒中有放回地任取一球,取个个连3次,取到球的则红个数X服超几何分布.从(×)(4)当μ取定,正曲的形由值时态线状σ确定,σ越小,曲越线“矮胖”.(×)教材改编题1.如果某一批玉米种子中,每粒发芽的概率均为,那么播下5粒这样的种子,恰有2粒不发芽的概率是()A.B.C.D.答案A解析用X表示芽的粒,发数则X~B,则P(X=3)=C×3×2=,故播下5粒的子,恰这样种有2粒不芽的率发概为.2.某班有48名同学,一次考试后的数学成绩服从正态分布N(80,102),则理论上在80分到90分的人数约是()A.32B.16C.8D.20答案B解析因成近似地服正分布为数学绩从态N(80,102),所以P(|x-80|≤10)≈0.6827.根据正态密度曲的性可知,位于线对称80分到90分之的率是位于间概70分到90分之的率的一间概半,所以理上在论80分到90分的人是数×0.6827×48≈16.3.在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=1)=________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com答案解析由意得,题P(X=1)==.题型一二项分布例1(1)(2023·海口模拟)某班50名学生通过直播软件上网课,为了方便师生互动,直播屏幕分为1个大窗口和5个小窗口,大窗口始终显示老师讲课的画面,5个小窗口显示5名不同学生的画面.小窗口每5分钟切换一次,即再次从全班随机选择5名学生的画面显示,且每次切换相互独立.若一节课40分钟,则该班甲同学一节课在直播屏幕上出现的时间的均值是()A.10分钟B.5分钟C.4分钟D.2分钟答案C解析每5分算作一,每一甲同出...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年高考押题预测卷生物(浙江卷02)(全解全析).docx
2024年高考押题预测卷生物(浙江卷02)(全解全析).docx
免费
12下载
2014年重庆市高考生物试卷往年高考真题.doc
2014年重庆市高考生物试卷往年高考真题.doc
免费
0下载
高中2022·微专题·小练习·生物【统考版】专练87.docx
高中2022·微专题·小练习·生物【统考版】专练87.docx
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第10单元 解惑练5 CRISPR Cas9技术.docx
2024年高考生物一轮复习讲义(新人教版)第10单元 解惑练5 CRISPR Cas9技术.docx
免费
14下载
2009年天津市高考生物试卷   .pdf
2009年天津市高考生物试卷 .pdf
免费
26下载
黑龙江省哈尔滨市六校2022~2023学年高一7月期末联考生物试题.pdf
黑龙江省哈尔滨市六校2022~2023学年高一7月期末联考生物试题.pdf
免费
9下载
1990年宁夏高考生物真题及答案.doc
1990年宁夏高考生物真题及答案.doc
免费
4下载
2022·微专题·小练习·生物【统考版】专练92.docx
2022·微专题·小练习·生物【统考版】专练92.docx
免费
15下载
2001年河南高考生物真题及答案(图片版).doc
2001年河南高考生物真题及答案(图片版).doc
免费
9下载
2023高考真题 湖北生物-试题 .pdf
2023高考真题 湖北生物-试题 .pdf
免费
13下载
2024年高考生物一轮复习讲义(新人教版)2024年高考生物一轮复习(新人教版) 第8单元 第2课时 神经调节的结构基础及基本方式.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考生物一轮复习(新人教版) 第8单元 第2课时 神经调节的结构基础及基本方式.docx
免费
2下载
湖北省华中师范大学第一附属中学2022-2023学年高三第二次学业质量评价检测生物试题.pdf
湖北省华中师范大学第一附属中学2022-2023学年高三第二次学业质量评价检测生物试题.pdf
免费
18下载
高中2024版《微专题》·生物学·新高考专练38.docx
高中2024版《微专题》·生物学·新高考专练38.docx
免费
0下载
2025版新高考版 生物考点清单+考法清单专题22   基因工程(讲解册PDF).pdf
2025版新高考版 生物考点清单+考法清单专题22 基因工程(讲解册PDF).pdf
免费
22下载
高中2024版《微专题》·生物·统考版专练44.docx
高中2024版《微专题》·生物·统考版专练44.docx
免费
0下载
2024届高考生物考向核心卷—湖北地区专用   答案分享.pdf
2024届高考生物考向核心卷—湖北地区专用 答案分享.pdf
免费
14下载
2024年高考生物一轮复习讲义(新人教版)第5章 §5.2 平面向量基本定理及坐标表示 (1).docx
2024年高考生物一轮复习讲义(新人教版)第5章 §5.2 平面向量基本定理及坐标表示 (1).docx
免费
28下载
2016年高考真题 生物(山东卷)(含解析版).pdf
2016年高考真题 生物(山东卷)(含解析版).pdf
免费
17下载
2011年高考生物真题(天津自主命题)(解析版).doc
2011年高考生物真题(天津自主命题)(解析版).doc
免费
19下载
高中2024版考评特训卷·生物学【新教材】(河北省专用)考点 37.docx
高中2024版考评特训卷·生物学【新教材】(河北省专用)考点 37.docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群