小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§10.7二项分布、超几何分布与正态分布考试要求1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态曲线了解正态分布的概念,并进行简单应用.知识梳理1.二项分布(1)伯努利试验只包含两个可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.(2)二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).(3)两点分布与二项分布的均值、方差①若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).②若X~B(n,p),则E(X)=np,D(X)=np(1-p).2.超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.3.正态分布(1)定义若随机变量X的概率分布密度函数为f(x)=,x∈R,其中μ∈R,σ>0为参数,则称随机变量X服从正态分布,记为X~N(μ,σ2).(2)正态曲线的特点①曲线是单峰的,它关于直线x=μ对称;②曲线在x=μ处达到峰值;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com③当|x|无限增大时,曲线无限接近x轴.(3)3σ原则①P(μ-σ≤X≤μ+σ)≈0.6827;②P(μ-2σ≤X≤μ+2σ)≈0.9545;③P(μ-3σ≤X≤μ+3σ)≈0.9973.(4)正态分布的均值与方差若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.常用结论1.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.2.超几何分布有时也记为X~H(n,M,N),其均值E(X)=,D(X)=.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)点分布是二分布两项当n=1的特殊情形.时(√)(2)若X表示n次重抛复掷1枚骰子出点是现数3的倍的次,数数则X服二分布.从项(√)(3)装有从3球、个红3白球的盒中有放回地任取一球,取个个连3次,取到球的则红个数X服超几何分布.从(×)(4)当μ取定,正曲的形由值时态线状σ确定,σ越小,曲越线“矮胖”.(×)教材改编题1.如果某一批玉米种子中,每粒发芽的概率均为,那么播下5粒这样的种子,恰有2粒不发芽的概率是()A.B.C.D.答案A解析用X表示芽的粒,发数则X~B,则P(X=3)=C×3×2=,故播下5粒的子,恰这样种有2粒不芽的率发概为.2.某班有48名同学,一次考试后的数学成绩服从正态分布N(80,102),则理论上在80分到90分的人数约是()A.32B.16C.8D.20答案B解析因成近似地服正分布为数学绩从态N(80,102),所以P(|x-80|≤10)≈0.6827.根据正态密度曲的性可知,位于线对称80分到90分之的率是位于间概70分到90分之的率的一间概半,所以理上在论80分到90分的人是数×0.6827×48≈16.3.在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=1)=________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com答案解析由意得,题P(X=1)==.题型一二项分布例1(1)(2023·海口模拟)某班50名学生通过直播软件上网课,为了方便师生互动,直播屏幕分为1个大窗口和5个小窗口,大窗口始终显示老师讲课的画面,5个小窗口显示5名不同学生的画面.小窗口每5分钟切换一次,即再次从全班随机选择5名学生的画面显示,且每次切换相互独立.若一节课40分钟,则该班甲同学一节课在直播屏幕上出现的时间的均值是()A.10分钟B.5分钟C.4分钟D.2分钟答案C解析每5分算作一,每一甲同出...