2024年高考生物一轮复习讲义(新人教版)第一课时 不等式恒(能)成立问题.doc本文件免费下载 【共12页】

2024年高考生物一轮复习讲义(新人教版)第一课时 不等式恒(能)成立问题.doc
2024年高考生物一轮复习讲义(新人教版)第一课时 不等式恒(能)成立问题.doc
2024年高考生物一轮复习讲义(新人教版)第一课时 不等式恒(能)成立问题.doc
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第一课时不等式恒(能)成立问题题型一分离参数法求参数范围例1(2020·全国Ⅰ卷)已知函数f(x)=ex+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥x3+1,求a的取值范围.解(1)当a=1时,f(x)=ex+x2-x,x∈R,f′(x)=ex+2x-1.故当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由f(x)≥x3+1得,ex+ax2-x≥x3+1,其中x≥0,①当x=0时,不等式为1≥1,显然成立,此时a∈R.②当x>0时,分离参数a,得a≥-,记g(x)=-,g′(x)=-.令h(x)=ex-x2-x-1(x>0),则h′(x)=ex-x-1,令H(x)=ex-x-1,H′(x)=ex-1>0,故h′(x)在(0,+∞)上是增函数,因此h′(x)>h′(0)=0,故函数h(x)在(0,+∞)上递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴h(x)>h(0)=0,即ex-x2-x-1>0恒成立,故当x∈(0,2)时,g′(x)>0,g(x)单调递增;当x∈(2,+∞)时,g′(x)<0,g(x)单调递减.因此,g(x)max=g(2)=,综上可得,实数a的取值范围是.感悟提升分离参数法解决恒(能)成立问题的策略(1)分离变量.构造函数,直接把问题转化为函数的最值问题.(2)a≥f(x)恒成立⇔a≥f(x)max;a≤f(x)恒成立⇔a≤f(x)min;a≥f(x)能成立⇔a≥f(x)min;a≤f(x)能成立⇔a≤f(x)max.训练1已知函数f(x)=.(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;(2)如果当x≥1时,不等式f(x)-≥0恒成立,求实数k的取值范围.解(1)函数的定义域为(0,+∞),f′(x)==-,令f′(x)=0,得x=1.当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以x=1为函数f(x)的极大值点,且是唯一极值点,所以0<a<1<a+,故<a<1,即实数a的取值范围为.(2)原不等式可化为当x≥1时,k≤恒成立,令g(x)=(x≥1),则g′(x)==.再令h(x)=x-lnx(x≥1),则h′(x)=1-≥0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以h(x)≥h(1)=1,所以g′(x)>0,所以g(x)为增函数,所以g(x)≥g(1)=2,故k≤2,即实数k的取值范围是(-∞,2].题型二分类讨论法求参数范围例2已知函数f(x)=ex-1-ax+lnx(a∈R).(1)若函数f(x)在x=1处的切线与直线3x-y=0平行,求a的值;(2)若不等式f(x)≥lnx-a+1对一切x∈[1,+∞)恒成立,求实数a的取值范围.解(1)f′(x)=ex-1-a+,∴f′(1)=2-a=3,∴a=-1,经检验a=-1满足题意,∴a=-1,(2)f(x)≥lnx-a+1可化为ex-1-ax+a-1≥0,令φ(x)=ex-1-ax+a-1,则当x∈[1,+∞)时,φ(x)min≥0, φ′(x)=ex-1-a,①当a≤0时,φ′(x)>0,∴φ(x)在[1,+∞)上单调递增,∴φ(x)min=φ(1)=1-a+a-1=0≥0恒成立,∴a≤0符合题意.②当a>0时,令φ′(x)=0,得x=lna+1.当x∈(-∞,lna+1)时,φ′(x)<0,当x∈(lna+1,+∞)时,φ′(x)>0,∴φ(x)在(-∞,lna+1)上单调递减,在(lna+1,+∞)上单调递增.当lna+1≤1,即0<a≤1时,φ(x)在[1,+∞)上单调递增,φ(x)min=φ(1)=0≥0恒成立,∴0<a≤1符合题意.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当lna+1>1,即a>1时,φ(x)在[1,lna+1)上单调递减,在(lna+1,+∞)上单调递增,∴φ(x)min=φ(lna+1)<φ(1)=0与φ(x)≥0矛盾.故a>1不符合题意.综上,实数a的取值范围为{a|a≤1}.感悟提升根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,此类问题关键是对参数分类讨论,在参数的每一段上求函数的最值,并判断是否满足题意,若不满足题意,只需找一个值或一段内的函数值不满足题意即可.训练2已知函数f(x)=lnx-a(x-1),a∈R,x∈[1,+∞),且f(x...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《微专题·小练习》·生物专练33 基因的分离定律的分析及相关计算.docx
2023《微专题·小练习》·生物专练33 基因的分离定律的分析及相关计算.docx
免费
28下载
2024版《微专题》·生物学·新高考专练77.docx
2024版《微专题》·生物学·新高考专练77.docx
免费
17下载
2004年上海市高中毕业统一学业考试生物试卷(答案版).doc
2004年上海市高中毕业统一学业考试生物试卷(答案版).doc
免费
8下载
2017年高考生物真题(北京自主命题)(解析版).doc
2017年高考生物真题(北京自主命题)(解析版).doc
免费
19下载
【高考生物】备战2024年易错点18  高中生物实验“四点”提醒(原卷版).docx
【高考生物】备战2024年易错点18 高中生物实验“四点”提醒(原卷版).docx
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第3单元 第5课时 捕获光能的色素和结构及光合作用的原理.docx
2024年高考生物一轮复习讲义(新人教版)第3单元 第5课时 捕获光能的色素和结构及光合作用的原理.docx
免费
21下载
2013年高考生物试卷(新课标Ⅱ)(空白卷).docx
2013年高考生物试卷(新课标Ⅱ)(空白卷).docx
免费
0下载
2024版《大考卷》全程考评特训卷·生物【统考版】考点33.docx
2024版《大考卷》全程考评特训卷·生物【统考版】考点33.docx
免费
26下载
山西省阳泉市2022-2023学年高一下学期期末统考生物试题.pdf
山西省阳泉市2022-2023学年高一下学期期末统考生物试题.pdf
免费
25下载
2024年高考生物试卷(河北)(空白卷).docx
2024年高考生物试卷(河北)(空白卷).docx
免费
0下载
2024版《微专题》·生物学·新高考专练73.docx
2024版《微专题》·生物学·新高考专练73.docx
免费
15下载
2024年高考生物一轮复习讲义(新人教版)2024年高考生物一轮复习(新人教版) 第3单元 第5课时 捕获光能的色素和结构及光合作用的原理.docx
2024年高考生物一轮复习讲义(新人教版)2024年高考生物一轮复习(新人教版) 第3单元 第5课时 捕获光能的色素和结构及光合作用的原理.docx
免费
1下载
2019年高考生物试卷(新课标Ⅲ)(空白卷).docx
2019年高考生物试卷(新课标Ⅲ)(空白卷).docx
免费
0下载
1991年黑龙江高考生物真题.doc
1991年黑龙江高考生物真题.doc
免费
12下载
【高考生物】备战2024年(新高考专用)易错点02 蛋白质和核酸的三个理解误区(原卷版).docx
【高考生物】备战2024年(新高考专用)易错点02 蛋白质和核酸的三个理解误区(原卷版).docx
免费
0下载
2024年高考生物一轮复习讲义(新人教版)第四课时 证明及探索性问题.doc
2024年高考生物一轮复习讲义(新人教版)第四课时 证明及探索性问题.doc
免费
24下载
2016年高考生物试卷(北京)(空白卷).doc
2016年高考生物试卷(北京)(空白卷).doc
免费
0下载
2016年浙江高考生物【10月】(解析版).docx
2016年浙江高考生物【10月】(解析版).docx
免费
29下载
2023年高考全国乙卷生物真题(解析版).docx
2023年高考全国乙卷生物真题(解析版).docx
免费
14下载
高中2022·微专题·小练习·生物【新高考】专练 62.docx
高中2022·微专题·小练习·生物【新高考】专练 62.docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群