小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第6节正弦定理和余弦定理考试要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.1.正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理余弦定理正弦定理公式a2=b2+c2-2bccos__A;b2=c2+a2-2cacos__B;c2=a2+b2-2abcos__C===2R常见变形cosA=;cosB=;cosC=(1)a=2RsinA,b=2Rsin__B,c=2Rsin__C;(2)sinA=,sinB=,sinC=;(3)a∶b∶c=sin__A∶sin__B∶sin__C;(4)asinB=bsinA,bsinC=csinB,asinC=csinA2.在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=bsinAbsinA<a<ba≥ba>ba≤b解的个数一解两解一解一解无解3.三角形常用面积公式(1)S=a·ha(ha表示a边上的高).(2)S=absinC=acsinB=bcsinA=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)S=r(a+b+c)(r为内切圆半径).1.三角形中的三角函数关系(1)sin(A+B)=sinC;(2)cos(A+B)=-cosC;(3)sin=cos;(4)cos=sin.2.三角形中的射影定理在△ABC中,a=bcosC+ccosB;b=acosC+ccosA;c=bcosA+acosB.3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sinA>sinB⇔cosA<cosB.1.思考辨析(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.()(2)在△ABC中,若sinA>sinB,则A>B.()(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.()(4)当b2+c2-a2>0时,△ABC为锐角三角形;当b2+c2-a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形.()答案(1)×(2)√(3)×(4)×解析(1)三角形中三边之比等于相应的三个内角的正弦值之比.(3)已知三角时,不可求三边.(4)当b2+c2-a2>0时,△ABC不一定为锐角三角形.2.(2021·北京西城区一模)在△ABC中,C=60°,a+2b=8,sinA=6sinB,则c=()A.B.C.6D.5答案B解析因为sinA=6sinB,由正弦定理可得a=6b,又a+2b=8,所以a=6,b=1,因为C=60°,所以c2=a2+b2-2abcosC,即c2=62+12-2×1×6×,解得c=.3.(2022·全国百校大联考)在△ABC中,A,B,C的对边分别为a,b,c,若a,b是方程x2-3x+2=0的两个实数根,且△ABC的面积为,则C的大小是(小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com)A.45°B.60°C.60°或120°D.45°或135°答案D解析根据题意,得ab=2,则×2×sinC=,解得C=45°或C=135°.4.(2020·全国Ⅲ卷)在△ABC中,cosC=,AC=4,BC=3,则tanB=()A.B.2C.4D.8答案C解析由余弦定理得AB2=AC2+BC2-2AC·BCcosC=42+32-2×4×3×=9,得AB=3,所以AB=BC.过点B作BD⊥AC,交AC于点D,则AD=AC=2,BD==,所以tan∠ABD===,所以tan∠ABC==4.5.(易错题)在△ABC中,已知b=40,c=20,C=60°,则此三角形的解的情况是()A.有一解B.有两解C.无解D.有解但解的个数不确定答案C解析由正弦定理得=,∴sinB===>1.∴角B不存在,即满足条件的三角形不存在.6.(易错题)在△ABC中,角A,B,C,满足sinAcosC-sinBcosC=0,则三角形的形状为________.答案直角三角形或等腰三角形解析由已知得cosC(sinA-sinB)=0,所以cosC=0或sinA=sinB,解得C=90°或A=B,所以△ABC是直角三角形或等腰三角形.考点一利用正、余弦定理解三角形例1(2021·新高考Ⅰ卷)记△ABC的内角A,B,C的对边分别为a,b,c.已知b2=ac,点D在边AC上,BDsin∠ABC=asinC.(1)证明:BD=b.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若AD=2DC,求cos∠ABC.(1)证明因为BDsin∠ABC=asinC,所以由正弦定理得,BD·b=ac,又b2=ac,所以BD·b=b2,又b>0,所以BD=b.(2)解法一如图所示,过点D作DE∥BC交AB于E,因为AD=2DC,...