小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第3节平面向量的数量积及其应用考试要求1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的长度的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a和b,O是平面上的任意一点,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫做向量a与b的夹角.(2)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,我们把数量|a||b|cos__θ叫做向量a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ.规定:零向量与任一向量的数量积为0,即0·a=0.(3)投影向量如图,在平面内任取一点O,作OM=a,ON=b,过点M作直线ON的垂线,垂足为M1,则OM1就是向量a在向量b上的投影向量.设与b方向相同的单位向量为e,a与b的夹角为θ,则OM1与e,a,θ之间的关系为OM1=|a|cosθe.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cosθ=x1x2+y1y2.(2)模:|a|==.(3)夹角:cosθ==.(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤·.3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)(a+b)·c=a·c+b·c(分配律).4.平面几何中的向量方法三步曲:(1)用向量表示问题中的几何元素,将几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系.1.两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线.2.平面向量数量积运算的常用公式(1)(a+b)·(a-b)=a2-b2;(2)(a+b)2=a2+2a·b+b2.(3)(a-b)2=a2-2a·b+b2.3.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0),不能得出b=c,两边不能约去同一个向量.1.思考辨析(在括号内打“√”或“×”)(1)两个向量的夹角的范围是.()(2)向量在另一个向量方向上的投影为数量,而不是向量.()(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.()(4)若a·b=a·c(a≠0),则b=c.()答案(1)×(2)√(3)√(4)×解析(1)两个向量夹角的范围是[0,π].(4)由a·b=a·c(a≠0)得|a||b|·cos〈a,b〉=|a||c|·cos〈a,c〉,所以向量b和c不一定相等.2.(2021·湖州二模)在边长为3的等边三角形ABC中,BM=MC,则BA·BM=()A.B.C.D.答案B解析 BM=MC,∴BM=BC,∴BA·BM=BA·BC=|BA||BC|cos=×3×3×=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(多选)(2021·青岛统检)已知向量a+b=(1,1),a-b=(-3,1),c=(1,1),设a,b的夹角为θ,则()A.|a|=|b|B.a⊥cC.b∥cD.θ=135°答案BD解析由a+b=(1,1),a-b=(-3,1),得a=(-1,1),b=(2,0),则|a|=,|b|=2,故A不正确;a·c=-1×1+1×1=0,故B正确;不存在λ∈R,使b=λc成立,故C不正确;cosθ===-,所以θ=135°,故D正确.综上知选BD.4.(2021·衡阳一模)非零向量a,b,c满足a·b=a·c,a与b的夹角为,|b|=4,则c在a上的投影向量的长度为()A.2B.2C.3D.4答案B解析由a·b=a·c,可得|a||b|cos〈a,b〉=|a||c|cos〈a,c〉,因为|a|≠0,所以|c|cos〈a,c〉=|b|cos〈a,b〉=4×cos=2,所以c在a上的投影向量的长度为||c|cos〈a,c〉|=2.5.(易错题)已知a,b为非零向量,则“a·b>0”是“a与b的夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不...