小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§3.6利用导数证明不等式考试要求导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.题型一将不等式转化为函数的最值问题例1(2023·坊模潍拟)已知函数f(x)=ex-ax-a,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,令g(x)=.证明:当x>0时,g(x)>1.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华待不等式的含有同一量,一般地,可以直接造证两边个变时构“左右减”的函数,有的式子要行形,利用究其性和最,借助所造函的性和时对复杂进变导数研单调值构数单调最即可得.值证跟踪训练1设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二将不等式转化为两个函数的最值进行比较例2(2023·州模苏拟)已知函数f(x)=elnx-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明f(x)-+2e≤0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华若直接求比或无下手,可待式行形,造函,而导较复杂从时将证进变构两个数从找到可以的中量,到明的目.本例中同含传递间达证标时lnx与ex,不能直接造函,把构数指分离,分算的最,借助最行明.数与对数两边别计它们值值进证跟踪训练2(2023·合肥模拟)已知函数f(x)=ex+x2-x-1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求f(x)的最小值;(2)证明:ex+xlnx+x2-2x>0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型三适当放缩证明不等式例3已知函数f(x)=aex-1-lnx-1.(1)若a=1,求f(x)在(1,f(1))处的切线方程;(2)证明:当a≥1时,f(x)≥0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华方法明不等式中,最常的是导数证见ex和lnx其他代式合的,于与数结问题对这,可以考先类问题虑对ex和lnx行放,使化,化后再建函行明.常进缩问题简简构数进证见的放公式如下:缩(1)ex≥1+x,且当仅当x=0取等;时号(2)lnx≤x-1,且当仅当x=1取等.时号跟踪训练3(2022·南充模拟)已知函数f(x)=ax-sinx.(1)若函数f(x)为增函数,求实数a的取值范围;(2)求证:当x>0时,ex>2sinx.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com