小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§6.4数列中的构造问题数列中的构造问题是历年高考的一个热点内容,主、客观题均可出现,一般通过构造新的数列求数列的通项公式.题型一形如an+1=pan+f(n)型命题点1an+1=pan+q(p≠0,1,q≠0)例1(1)数列{an}满足an=4an-1+3(n≥2)且a1=0,则a2024等于()A.22023-1B.42023-1C.22023+1D.42023+1(2)已知数列{an}的首项a1=1,且=+2,则数列{an}的通项公式为__________.听课记录:______________________________________________________________________________________________________________________________________命题点2an+1=pan+qn+c(p≠0,1,q≠0)例2已知数列{an}满足an+1=2an-n+1(n∈N*),a1=3,求数列{an}的通项公式.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________命题点3an+1=pan+qn(p≠0,1,q≠0,1)例3(1)已知数列{an}中,a1=3,an+1=3an+2·3n+1,n∈N*.则数列{an}的通项公式为()A.an=(2n+1)·3nB.an=(n-1)·2nC.an=(2n-1)·3nD.an=(n+1)·2n(2)在数列{an}中,a1=1,且满足an+1=6an+3n,则an=________.听课记录:______________________________________________________________________________________________________________________________________思维升华形式造方法构an+1=pan+q引入参数c,造新的等比列构数{an-c}an+1=pan+qn+c引入参数x,y,造新的等比列构数{an+xn+y}an+1=pan+qn同除以两边qn+1,造新的列构数跟踪训练1(1)在数列{an}中,a1=1,an+1=2an+2n.则数列{an}的通项公式an等于()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.n·2n-1B.n·2nC.(n-1)·2nD.(n+1)·2n(2)(2023·山模黄拟)已知数列{an}满足a1=1,(2+an)·(1-an+1)=2,设的前n项和为Sn,则a2023(S2023+2023)的值为()A.22023-2B.22023-1C.2D.1(3)已知数列{an}满足an+1=2an+n,a1=2,则an=________.题型二相邻项的差为特殊数列(形如an+1=pan+qan-1)例4(1)已知数列{an}满足:a1=a2=2,an=3an-1+4an-2(n≥3),则a9+a10等于()A.47B.48C.49D.410(2)已知数列{an}满足a1=1,a2=2,且an+1=2an+3an-1(n≥2,n∈N*).则数列{an}的通项公式为an=________.听课记录:______________________________________________________________________________________________________________________________________思维升华可以化为an+1-x1an=x2(an-x1an-1),其中x1,x2是方程x2-px-q=0的根,两个若1是方程的根,直接造列则构数{an-an-1},若1不是方程的根,需要造列,则构两个数采取消元的方法求列数{an}.跟踪训练2若x=1是函数f(x)=an+1x4-anx3-an+2x+1(n∈N*)的极值点,数列{an}满足a1=1,a2=3,则数列{an}的通项公式an=________.题型三倒数为特殊数列例5(1)已知数列{an}满足a1=1,an+1=(n∈N*),则满足an>的n的最大取值为()A.7B.8C.9D.10(2)(多选)数列{an}满足an+1=(n∈N*),a1=1,则下列结论正确的是()A.=+B.是等比数列C.(2n-1)an=1D.3a5a17=a49听课记录:______________________________________________________________________________________________________________________________________思维升华同取倒化=两边时数转为·+的形式,化归为bn+1=pbn+q型,求出的表式,达再求an.跟踪训练3已知函数f(x)=,数列{an}满足a1=1,an+1=f(an)(n∈N*),则数列{an}的通项公式为____________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com