小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com§8.7抛物线考试要求1.掌握抛物线的定义、几何图形、标准方程.2.掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).3.了解抛物线的简单应用.知识梳理1.抛物线的概念把平面内与一个定点F和一条定直线l(l不经过点F)的距离的点的轨迹叫做抛物线.点F叫做抛物线的,直线l叫做抛物线的.2.抛物线的标准方程和简单几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形范围x≥0,y∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R焦点准线方程对称轴顶点离心率e=_____常用结论1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F的距离|PF|=x0+,也称为抛物线的焦半径.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面一定点内与个F和一定直条线l的距离相等的点的迹是抛物.轨线()(2)方程y=4x2表示焦点在x上的抛物,焦点坐是轴线标(1,0).()(3)抛物是中心形,又是形.线既对称图轴对称图()(4)以(0,1)焦点的抛物的准方程为线标为x2=4y.()教材改编题1.抛物线x2=y的准线方程为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.y=-B.x=-C.y=D.x=2.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于()A.9B.8C.7D.63.抛物线y2=2px(p>0)上一点M(3,y)到焦点F的距离|MF|=4,则抛物线的方程为()A.y2=8xB.y2=4xC.y2=2xD.y2=x题型一抛物线的定义及应用例1(1)(2022·全乙卷国)设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|等于()A.2B.2C.3D.3(2)已知点M(20,40)不在抛物线C:y2=2px(p>0)上,抛物线C的焦点为F.若对于抛物线上的一点P,|PM|+|PF|的最小值为41,则p的值等于________.听课记录:______________________________________________________________________________________________________________________________________思维升华“看到准想到焦点,看到焦点想到准线线”,多抛物均可根据定得许线问题义获捷、直的求解.简观“由想形,由形想,形合数数数结”是活解的一捷.灵题条径跟踪训练1(1)已知抛物线y=mx2(m>0)上的点(x0,2)到该抛物线焦点F的距离为,则m等于()A.4B.3C.D.(2)若P是抛物线y2=8x上的动点,P到y轴的距离为d1,到圆C:(x+3)2+(y-3)2=4上动点Q的距离为d2,则d1+d2的最小值为________.题型二抛物线的标准方程例2分别求满足下列条件的抛物线的标准方程.(1)准线方程为2y+4=0;(2)过点(3,-4);(3)焦点在直线x+3y+15=0上.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华求抛物的准方程的方法线标(1)定法.义(2)待定系法:焦点位置不确定,分情.数当时况讨论小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com跟踪训练2(1)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()A.y2=xB.y2=9xC.y2=xD.y2=3x(2)(2022·烟台模拟)已知点F为抛物线y2=2px(p>0)的焦点,点P在抛物线上且横坐标为8,O为坐标原点,若△OFP的面积为2,则该抛物线的准线方程为()A.x=-B.x=-1C.x=-2D.x=-4题型三抛物线的几何性质例3(1)在抛物线y2=8x上有三点A,B,C,F为其焦点,且F为△ABC的重心,则|AF|+|BF|+|CF|等于()A.6B.8C.9D.12(2)(多选)已知抛物线C:y2=2px(p>0)的焦点为F,直线l的斜率为且经过点F,与抛物线C交于A,B两点(点A在第一象限)...