!学科网(北京)股份有限公司1专题01集合与常用逻辑用语考点一:集合的概念1.(2023·江苏)对于两个非空实数集合A和B,我们把集合,,xxabaAbB∣记作AB.若集合0,1,0,1AB,则AB中元素的个数为()A.1B.2C.3D.4【答案】C【详解】0,1,0,1AB,则0,1,1AB,则AB中元素的个数为3故选:C考点二:集合间的基本关系1.(2023春·福建)已知全集为U,MNM,则其图象为()A.B.C.D.【答案】A【详解】全集为U,MNM,则有MN,选项BCD不符合题意,选项A符合题意.故选:A考点三:集合的基本运算1.(2023·北京)已知全集1,2,3,4U,集合1,2A,则UAð()A.1,3B.2,3C.1,4D.3,4【答案】D【详解】因为{1,2,3,4},{1,2}UA,所以3,4UAð;故选:D.2.(2023·河北)设集合2,3,4M,3,4,5N,则MN()A.2B.5C.3,4D.2,3,4,5【答案】C【详解】根据列举法表示的集合可知,!学科网(北京)股份有限公司2由2,3,4M,3,4,5N,利用交集运算可得3,4MN.故选:C3.(2023·山西)已知集合1216∣xAx,{53}∣Bxx,则AB()A.{54}xx∣B.{53}∣xxC.{03}xx∣D.{34}xx∣【答案】C【详解】解:因为1216x,即04222x,所以04x,所以|1216|04xAxxx,因为{|53}Bxx所以|03ABxx故选:C4.(2023·江苏)已知集合2,0,2,0,2,4AB,则AB()A.0,2B.2,2,4C.{}2,0,2-D.2,0,2,4【答案】A【详解】集合2,0,2,0,2,4AB,则0,2ABI.故选:A5.(2023春·浙江)已知全集{2,4,6,8,10}U,集合{2,4}A=,{1,6,8}B,则UBAð()A.{2,4}B.{6,8,10}C.{6,8}D.{2,4,6,8,10}【答案】C【详解】因为全集{2,4,6,8,10}U,集合{2,4}A=,所以6,8,10UAð,因为{1,6,8}B,所以6,8UABð,故选:C6.(2023春·湖南)已知集合0,1A,1,2,3B,则AB()A.1B.1,2C.0,1D.1,2,3【答案】A【详解】由题意得AB1,故选:A7.(2023·广东)设集合012M,,,1,0,1N,则MN()A.0,1B.0,1,2!学科网(北京)股份有限公司3C.1,0,1,2D.1,0,1【答案】C【详解】因为集合012M,,,1,0,1N,因此,1,0,1,2MN.故选:C.8.(2023春·新疆)已知集合1,0,1,0,1,2AB,则AB()A.1,0,1,2B.0,1C.1,0,1D.1,1,2【答案】B【详解】因为集合1,0,1,0,1,2AB,所以AB0,1.故选:B9.(2022春·天津)已知集合1,3A,2,3,4B,则AB等于()A.1B.3C.1,3D.1,2,3,4【答案】B【详解】集合1,3A,2,3,4B,则AB等于3.故选:B10.(2022·山西)已知集合{1U,2,3,4},{1A,3},{1B,4},则()UABð()A.{2,3}B.{3}C.{1}D.{1,2,3,4}【答案】B【详解】集合{1U,2,3,4},{1A,3},{1B,4},则2,3UCB,3UACB故选:B11.(2022春·辽宁)已知集合2,4A,2,3B,则AB().A.{2}B.{2,3}C.{2,4}D.{2,3,4}【答案】D【详解】解:因为2,4A,2,3B,所以2,3,4AB故选:D12.(2022春·浙江)已知集合0,1,2A,1,2,3,4B,则AB()A.B.1C.2D.1,2【答案】D!学科网(北京)股份有限公司4【详解】 0,1,2A,1,2,3,4B,∴1,2AB.故选:D.13.(2022秋·浙江)已知集合P={0,1,2},Q={1,2,3},则P∩Q=()A.{0}B.{0,3}C.{1,2}D.{0,1,2,3}【答案】C【详解】P={0,1,2},Q={1,2,3}P∩Q={1,2};故选:C.14.(2022春·浙江)已知集合0,1,2,3,4,1,1,2,3,5AB,则AB()A.1,5B.1,3C.1,2,3D....