小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com课时作业(三十六)基本计数原理的简单应用[练基础]1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2160B.720C.240D.1202.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点(a,b)的坐标,能够确定不在x轴上的点的个数是()A.100B.90C.81D.723.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有()A.512个B.192个C.240个D.108个4.已知集合A={1,2,3,4,5},B={5,8,9},则从这两个集合中各取出一个元素组成一个新的双元素集合,则可以组成这样的新集合的个数为()A.8B.12C.14D.155.将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有()A.12种B.9种C.8种D.6种6.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图,()表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示的三位数的个数为()A.46B.44C.42D.407.由0,1,2,3,5组成的无重复数字的五位偶数共有________个.8.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个格子的标号与所填的数字均不同的填法有________种.9.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.10.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[提能力]11.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,且相邻区域所涂颜色不同,则不同的涂色方法种数为()A.84B.72C.64D.5612.某人设计了一个单人游戏,规则如下:先将一枚棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走多少,如果掷出的点数为k(k=1,2,…,6),则棋子就按逆时针方向行走k个单位,一直循环下去.某人抛掷三次骰子后,棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.36种13.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有__________种.(用数字作答)14.从{-3,-2,-1,0,1,2,3}中,任取3个不同的数作为抛物线方程y=ax2+bx+c的系数,如果抛物线经过原点,且顶点在第一象限,则这样的抛物线共有________条.15.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?[培优生]16.若一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么共有凸数多少个?小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com