2011年安徽高考理科数学真题及答案一、选择题(共10小题,每小题5分,满分50分)1.(5分)设i是虚数单位,复数为纯虚数,则实数a为()A.2B.﹣2C.D.【解答】解:复数==,它是纯虚数,所以a=2,故选A2.(5分)双曲线2x2﹣y2=8的实轴长是()A.2B.C.4D.【解答】解:2x2﹣y2=8即为∴a2=4∴a=2故实轴长为4故选C3.(5分)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)=()A.﹣3B.﹣1C.1D.3【解答】解: 当x≤0时,f(x)=2x2﹣x,∴f(﹣1)=2(﹣1)2﹣(﹣1)=3,又 f(x)是定义在R上的奇函数∴f(1)=﹣f(﹣1)=﹣3故选A4.(5分)设变量x,y满足|x|+|y|≤1,则x+2y的最大值和最小值分别为()A.1,﹣1B.2,﹣2C.1,﹣2D.2,﹣1【解答】解:约束条件|x|+|y|≤1可化为:其表示的平面区域如下图所示:由图可知当x=0,y=1时x+2y取最大值2当x=0,y=﹣1时x+2y取最小值﹣2故选B5.(5分)在极坐标系中,点(2,)到圆ρ=2cosθ的圆心的距离为()A.2B.C.D.【解答】解:在直角坐标系中,点即(1,),圆即x2+y2=2x,即(x﹣1)2+y2=1,故圆心为(1,0),故点(2,)到圆ρ=2cosθ的圆心的距离为=,故选D.6.(5分)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48B.32+8C.48+8D.80【解答】解:如图所示的三视图是以左视图所示等腰梯形为底的直四棱柱,其底面上底长为2,下底长为4,高为4,故底面积S底=×(2+4)×4=12腰长为:=则底面周长为:2+4+2×=6+2则其侧面积S侧=4×(6+2)=24+8则该几何体的表面积为S=2×S底+S侧=2×12+24+8=48+8故选C.7.(5分)命题“所有能被2整除的数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D8.(5分)设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠∅的集合S的个数是()A.57B.56C.49D.8【解答】解:集合A的子集有:∅,{1},{2},{3},{4},{5},{6},{1,2},{1,3},{1,4},{1,5},…,{1,2,3,4,5,6},共1++++++=64个;又S∩B≠∅,B={4,5,6,7,8},所以S不能为:∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}共8个,则满足S⊆A且S∩B≠∅的集合S的个数是64﹣8=56.故选:B.9.(5分)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.[kπ﹣,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ﹣,kπ](k∈Z)【解答】解:若对x∈R恒成立,则f()等于函数的最大值或最小值即2×+φ=kπ+,k∈Z则φ=kπ+,k∈Z又即sinφ<0令k=﹣1,此时φ=,满足条件令2x∈[2kπ﹣,2kπ+],k∈Z解得x∈故选C10.(5分)函数f(x)=axm(1﹣x)n在区间[0,1]上的图象如图所示,则m,n的值可能是()A.m=1,n=1B.m=1,n=2C.m=2,n=1D.m=3,n=1【解答】解:由于本题是选择题,可以用代入法来作,由图得,原函数的极大值点小于0.5.当m=1,n=1时,f(x)=ax(1﹣x)=﹣a+.在x=处有最值,故A错误;当m=1,n=2时,f(x)=axm(1﹣x)n=ax(1﹣x)2=a(x3﹣2x2+x),所以f′(x)=a(3x﹣1)(x﹣1),令f′(x)=0⇒x=,x=1,即函数在x=处有最值,故B正确;当m=2,n=1时,f(x)=axm(1﹣x)n=ax2(1﹣x)=a(x2﹣x3),有f'(x)=a(2x﹣3x2)=ax(2﹣3x),令f′(x)=0⇒x=0,x=,即函数在x=处有最值,故C错误;当m=3,n=1时,f(x)=axm(1﹣x)n=ax3(1﹣x)=a(x3﹣x4),有f′(x)=ax2(3﹣4x),令f′(x)=0,⇒x=0,x=,即函数在x=处有最值,故D错误.故选:B.二、填空题(共5小题,每小题3分,满分15分)11.(3分)如图所示,程序框图(算法流程图)的输出结果是15.【解答】解:...