2006年福建高考理科数学真题及答案第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设a、b、c、d∈R,则复数(a+bi)(c+di)为实数的充要条件是A.ad-bc=0B.ac-bd=0C.ac+bd=0D.ad+bc=0(2)在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于A.40B.42C.43D.45(3)已知∈(2,),sin=53,则tan(4)等于A.71B.7C.-71D.-7(4)已知全集U=R,且A={x︱︱x-1︱>2},B={x︱x2-6x+8<0},则(UA)∩等于A.[-1,4]B.(2,3)C.(2,3)D.(-1,4)(5)已知正方体外接球的体积是332,那么正方体的棱长等于A.22B.332C.324D.334(6)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于A.72B.83C.73D.289(7)对于平面和共面的直线m、n,下列命题中真命题是A.若m⊥,m⊥n,则n∥B.若m∥,n∥,则m∥nC.若m,n∥,则m∥nD.若m、n与所成的角相等,则n∥m(8)函数y=㏒21xx(x﹥1)的反函数是A.y=122xx(x>0)B.y=122xx(x<0)C.y=xx212(x>0)D..y=xx212(x<0)(9)已知函数f(x)=2sinx(>0)在区间[3,4]上的最小值是-2,则的最小值等于A.32B.23C.2D.3(10)已知双曲线12222byax(a>0,b<0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.(1,2)B.(1,2)C.[2,+∞]D.(2,+∞)(11)已知︱OA︱=1,︱OB︱=3,OBOA=0,点C在∠AOB内,且∠AOC=30°,设OC=mOA+nOB(m、n∈R),则nm等于A.31B.3C.33D.3(12)对于直角坐标平面内的任意两点A(x1,y1)、B(x2,y2),定义它们之间的一种“距离”:‖AB‖=︱x1-x2︱+︱y1-y2︱.给出下列三个命题:①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;②在△ABC中,若∠C=90°,则‖AC‖2+‖CB‖2=‖AB‖2;③在△ABC中,‖AC‖+‖CB‖>‖AB‖.其中真命题的个数为A.0B.1C.2D.3第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)(x2-x1)2展开式中x2的系数是(用数字作答)(14)已知直线x-y-1=0与抛物线y=ax2相切,则a=(15)一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是(16)如图,连结△ABC的各边中点得到一个新的△A1B1C1,又连结的△A1B1C1各边中点得到,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M,已知A(0,0),B(3,0),C(2,2),则点M的坐标是.二、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知函数f(x)=sin2x+3xcosx+2cos2x,xR.(I)求函数f(x)的最小正周期和单调增区间;(Ⅱ)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?(18)(本小题满分12分)如图,四面体ABCD中,O、E分别BD、BC的中点,CA=CB=CD=BD=2(Ⅰ)求证:AO⊥平面BCD;(Ⅱ)求异面直线AB与CD所成角的大小;(Ⅲ)求点E到平面的距离.(19)(本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=880312800012xx(0<x≤120).已知甲、乙两地相距100千米。(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?(20)(本小题满分12分)已知椭圆1222yx的左焦点为F,O为坐标原点。(Ⅰ)求过点O、F,并且与椭圆的左准线l相切的圆的方程;(Ⅱ)设过点F且不与坐标轴垂直交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.(21)(本小题满分12分)已知函数f(x)=-x2+8x,g(x)=6lnx+m(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。(22)(本小题满分14分)已知数列{a...