2011年福建高考理科数学真题及答案一、选择题(共10小题,每小题5分,满分50分)1.(5分)i是虚数单位,若集合S={﹣1,0,1},则()A.i∈SB.i2∈SC.i3∈SD.【解答】解: S={﹣1.0.1},∴i∉S,故A错误;i2=﹣1∈S,故B正确;i3=﹣i∉S,故C错误;∉S,故D错误;故选B2.(5分)若a∈R,则a=2是(a﹣1)(a﹣2)=0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当a=2时,(a﹣1)(a﹣2)=0成立故a=2⇒(a﹣1)(a﹣2)=0为真命题而当(a﹣1)(a﹣2)=0,a=1或a=2,即a=2不一定成立故(a﹣1)(a﹣2)=0⇒a=2为假命题故a=2是(a﹣1)(a﹣2)=0的充分不必要条件故选A3.(5分)若tanα=3,则的值等于()A.2B.3C.4D.6【解答】解:==2tanα=6故选D4.(5分)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于()A.B.C.D.【解答】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.5.(5分)(ex+2x)dx等于()A.1B.e﹣1C.eD.e2+1【解答】解:(ex+2x)dx=(ex+x2)|01=e+1﹣1=e故选C.6.(5分)(1+2x)3的展开式中,x2的系数等于()A.80B.12C.20D.10【解答】解:展开式的通项为Tr+1=2rC3rxr令r=2的展开式中x2的系数等于22C32=12故选B7.(5分)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于()A.B.或2C.2D.【解答】解:依题意设|PF1|=4t,|F1F2|=3t,|PF2|=2t,若曲线为椭圆则2a=|PF1|+|PF2|=6t,c=t则e==,若曲线为双曲线则,2a=4t﹣2t=2t,a=t,c=t∴e==故选A8.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值范围是()A.[﹣1,0]B.[0,1]C.[0,2]D.[﹣1,2]【解答】解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,•=﹣1×1+1×1=0当x=1,y=2时,•=﹣1×1+1×2=1当x=0,y=2时,•=﹣1×0+1×2=2故•和取值范围为[0,2]解法二:z=•=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故•和取值范围为[0,2]故选:C9.(5分)对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(﹣1),所得出的正确结果一定不可能是()A.4和6B.3和1C.2和4D.1和2【解答】解:f(1)=asin1+b+c①f(﹣1)=﹣asin1﹣b+c②①+②得:f(1)+f(﹣1)=2c c∈Z∴f(1)+f(﹣1)是偶数故选:D10.(5分)已知函数f(x)=ex+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角形;④△ABC不可能是等腰三角形.其中,正确的判断是()A.①③B.①④C.②③D.②④【解答】解:由于函数f(x)=ex+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,且横坐标依次增大由于此函数是一个单调递增的函数,故由A到B的变化率要小于由B到C的变化率.可得出角ABC一定是钝角故①对,②错.由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,故三角形不可能是等腰三角形,由此得出③不对,④对.故选B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)运行如图所示的程序,输出的结果是3.【解答】解:a=1,b=2,接下来:a=1+2=3故最后输出3.故答案为:3.12.(4分)三棱锥P﹣ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P﹣ABC的体积等于.【解答】解:三棱锥P﹣ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,所以底面面积为:;三棱锥的体积为:=故答案为:13.(4分)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于.【解答】解:从中随机取出2个球,每个球被取到的可能性相同,是古典概型从中随机取出2个球,所有...