2010年福建高考理科数学真题及答案第I卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.计算sin43°cos13°-cos43°sin13°的结果等于A.B.C.D.2.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2-x=0D.x2+y2-2x=03.设等差数列{an}前n项和为Sn.若a1=-11,a4+a6=-6,则当Sn取最小值时,n等于A.6B.7C.8D.94.函数f(x)=的零点个数为A.0B.1C.2D.35.阅读右图所示的程序框图,运行相应的程序,输出的i值等于A.2B.3C.4D.56.如图,若是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是A.EH∥FGB.四边形EFGH是矩形C.是棱柱D.是棱台7.若点O和点F(-2,0)分别为双曲线(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为A.[3-,)B.[3+,)C.[,)D.[,)8.设不等式组所表示的平面区域是,平面区域与关于直线3x-4y-9对称。对于中的任意点A与中的任意点B,∣AB∣的最小值等于A.B.4C.D.29.对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,yS,必有xyS”,则当时,b+c+d等于A.1B.-1C.0D.i10.对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x0D,使得当xD且x>x0时,总有则称直线l:y=kx+b为曲线y=f(x)与y=g(x)的“分渐近线”。给出定义域均为D=的四组函数如下:①f(x)=x2,g(x)=;②f(x)=10-x+2,g(x)=;③f(x)=,g(x)=;④f(x)=,g(x)=2(x-1-e-x).其中,曲线y=f(x)与y=g(x)存在“分渐近线”的是A.①④B.②③C.②④D.③④第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。11.在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an()12.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于()。13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于()。14.已知函数f(x)=3sin(x-)(>0)和g(x)=2cos(2x+)+1的图像的对称轴完全相同。若x,则f(x)的取值范围是()。15.已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2]时,f(x)=2-x。给出结论如下:①对任意mZ,有f(2m)=0;②函数f(x)的值域为[0,+);③存在nZ,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”.其中所有正确结论的序号是()。三、解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。16.(本小题满分13分)设S是不等式x2-x-60的解集,整数m,nS。(Ⅰ)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(Ⅱ)设=m2,求的分布列及其数学期望E。17.(本小题满分13分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2.0)为其右焦点。(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OA与L的距离等于4?若存在,求出直线L的方程;若不存在,说明理由。18.(本小题满分13分)如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1;(Ⅱ)设AB=AA1。在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P。(i)当点C在圆周上运动时,求P的最大值;(ii)记平面A1ACC1与平面B1OC所成的角为(0°<90°)。当P取最大值时,求cos的值。19.(本小题满分13分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,经过t小时与轮船相遇。(Ⅰ)若希望...