2007年湖北高考理科数学真题及答案本试卷共4页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果的展开式中含有非零常数项,则正整数的最小值为()A.3B.5C.6D.102.将的图象按向量平移,则平移后所得图象的解析式为()A.B.C.D.3.设和是两个集合,定义集合,如果,,那么等于()A.B.C.D.4.平面外有两条直线和,如果和在平面内的射影分别是和,给出下列四个命题:①;②;③与相交与相交或重合;④与平行与平行或重合.其中不正确的命题个数是()A.1B.2C.3D.45.已知和是两个不相等的正整数,且,则()A.0B.1C.D.6.若数列满足(为正常数,),则称为“等方比数列”.甲:数列是等方比数列;乙:数列是等比数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.双曲线的左准线为,左焦点和右焦点分别为和;抛物线的准线为,焦点为与的一个交点为,则等于()A.B.C.D.8.已知两个等差数列和的前项和分别为A和,且,则使得为整数的正整数的个数是()A.2B.3C.4D.59.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A.B.C.D.10.已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有()A.60条B.66条C.72条D.78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知函数的反函数是,则;.12.复数,且,若是实数,则有序实数对可以是.(写出一个有序实数对即可)13.设变量满足约束条件则目标函数的最小值为.14.某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率.(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示.据图中提供的信息,回答下列问题:(I)从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为;(II)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知的面积为,且满足,设和的夹角为.(I)求的取值范围;(II)求函数的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II)估计纤度落在中的概率及纤度小于分组频数合计O0.11(毫克)(小时)的概率是多少?(III)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此,估计纤度的期望.18.(本小题满分12分)如图,在三棱锥中,底面,,是的中点,且,.(I)求证:平面;(II)当解变化时,求直线与平面所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系中,过定点作直线与抛物线()相交于两点.(I)若点是点关于坐标原点的对称点,求面积的最小值;(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.(此题不要求在答题卡上画图)20.(本小题满...