2008年湖南高考理科数学真题及答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数等于A.8B.-8C.8iD.-8i(D)2.“|x-1|<2成立”是“x(x-3)<0成立”的A.充分而不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(B)3.已知变量x、y满足条件则x+y的最大值是A.2B.5C.6D.8(C)4.设随机变量服从正态分布N(2,9),若P(>c+1)=P(<c-,则c=A.1B.2C.3D.4(B)5.设有直线m、n和平面、。下列四个命题中,正确的是A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥(D)6.函数f(x)=sin2x+在区间上的最大值是A.1B.C.D.1+(C)7.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且则与A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直(A)8.若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是A.(1,2)B.(2,+)C.(1,5)D.(5,+)(B)9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD=,AA1=1,则顶点A、B间的球面距离是A.2B.C.D.(C)10.设[x]表示不超过x的最大整数(如[2]=2,[]=1),对于给定的nN*,定义,x,则当x时,函数的值域是A.B.C.D.(D)二、填空题:本大题共5小题,每小题5分,共25分。把答案填在对应题号后的横线上。11..12.已知椭圆(a>b>0)的右焦点为F,右准线为l,离心率e=过顶点A(0,b)作AMl,垂足为M,则直线FM的斜率等于.13.设函数y=f(x)存在反函数y=f-1(x),且函数y=x-f(x)的图象过点(1,2),则函数y=f-1(x)-x的图象一定过点(-1,2).14.已知函数f(x)=(1)若a>0,则f(x)的定义域是;(2)若f(x)在区间上是减函数,则实数a的取值范围是.15.对有n(n≥4)个元素的总体{1,2,3,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本,用Pij表示元素i和j同时出现在样本中的概率,则P1n=;所有Pif(1≤i<j≤的和等于6.三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约。乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试合格的概率都是,且面试是否合格互不影响。求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.解用A,B,C分别表示事件甲、乙、丙面试合格。由题意知A,B,C相互独立,且P(A)=P(B)=P(C)=.(Ⅰ)至少有1人面试合格的概率是(Ⅱ)的可能取值为0,1,2,3.====所以,的分布列是0123P的期望17.(本小题满分12分)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.解解法一(Ⅰ)如图所示,连结BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形。因为E是CD的中点,所以BE⊥CD,又AB∥CD,所以BE⊥AB。又因为PA⊥平面ABCD,平面ABCD,所以PA⊥BE。而AB=A,因此BE⊥平面PAB.又平面PBE,所以平面PBE⊥平面PAB.(Ⅱ)延长AD、BE相交于点F,连结PF。过点A作AH⊥PB于H,由(Ⅰ)知平面PBE⊥平面PAB,所以AH⊥平面PBE.在Rt△ABF中,因为∠BAF=60°,所以AF=2AB=2=AP.在等腰Rt△PAF中,取PF的中点G,连接AG.则AG⊥PF.连结HG,由三垂线定理的逆定理得,PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角).在等腰Rt△PAF中,在Rt△PAB中,所以,在Rt△AHG中,故平面PAD和平面PBE所成二面角(锐角)的大小是解法二如图所示,以A为原点,建立空间直角坐标系。则相关各点的坐标分别是A(0,0,0),B(1,0,0),P(0,0,2),E(1,,0)(Ⅰ)因为,平面PAB的一个法向量是,所以共线.从而BE⊥平面PAB.又因为平面PBE,故平面PBE⊥平面PAB.(Ⅱ)易知设是平面PBE的一个法向量,则由得所以设是平面PAD的一个法向量,则由得所以故可取于是,故平面PAD和平面PBE所成二面...