2011年天津高考理科数学真题及答案一、选择题(共8小题,每小题5分,满分40分)1.(5分)i是虚数单位,复数=()A.2+iB.2﹣iC.﹣1+2iD.﹣1﹣2i【解答】解:复数===2﹣i故选B.2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若x≥2且y≥2,则x2≥4,y2≥4,所以x2+y2≥8,即x2+y2≥4;若x2+y2≥4,则如(﹣2,﹣2)满足条件,但不满足x≥2且y≥2.所以“x≥2且y≥2”是“x2+y2≥4”的充分而不必要条件.故选A.3.(5分)阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6【解答】解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B4.(5分)已知{an}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N*,则S10的值为()A.﹣110B.﹣90C.90D.110【解答】解:a7是a3与a9的等比中项,公差为﹣2,所以a72=a3•a9, {an}公差为﹣2,∴a3=a7﹣4d=a7+8,a9=a7+2d=a7﹣4,所以a72=(a7+8)(a7﹣4),所以a7=8,所以a1=20,所以S10==110故选D5.(5分)在的二项展开式中,x2的系数为()A.B.C.D.【解答】解:展开式的通项为Tr+1=(﹣1)r22r﹣6C6rx3﹣r令3﹣r=2得r=1所以项展开式中,x2的系数为﹣故选C6.(5分)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A.B.C.D.【解答】解:设AB=x,由题意可得AD=x,BD=△ABD中,由余弦定理可得∴sinA=△ABD中,由正弦定理可得⇒sin∠ADB=∴△BDC中,由正弦定理可得故选:D.7.(5分)已知,则()A.a>b>cB.b>a>cC.a>c>bD.c>a>b【解答】解: log23.4>1,log43.6<1,又y=5x是增函数,∴a>b,>==b而log23.4>log2>log3,∴a>c故a>c>b.故选C.8.(5分)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【解答】解: ,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.二、填空题(共6小题,每小题5分,满分30分)9.(5分)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为12.【解答】解: 田径队有男运动员48人,女运动员36人,∴这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,∴每个个体被抽到的概率是, 田径队有男运动员48人,∴男运动员要抽取48×=12人,故答案为:12.10.(5分)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为6+πm3.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为3,下部的长方体长、宽高分别为:2,3,1则V圆锥=•π•3=πV长方体=1×2×3=6则V=6+π故答案为:6+π11.(5分)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r=.【解答】解: 抛物线C的参数方程为则抛物线的标准方程为:y2=8x则抛物线C的焦点的坐标为(2,0)又 斜率为1的直线经过抛物线C的焦点则直线的方程为y=x﹣2,即经x﹣y﹣2=0由直线与圆(x﹣4)2+y2=r2,则r==故答案为:12.(5分)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.【解答】解:设AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=,∴AF=2,BF=1,BE=,AE=,由切割定理得CE2=BE•EA==,∴CE=.13.(5分)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B={x|﹣2≤x≤5}.【解答】解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,,当且仅当t=时取等号,所以B={x|x≥﹣2},所以A∩B={...