ABlC1CCB1B1AA2007年上海高考文科数学真题及答案考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.方程的解是.2.函数的反函数.3.直线的倾斜角.4.函数的最小正周期.5.以双曲线的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是.6.若向量的夹角为,,则.7.如图,在直三棱柱中,,,,则异面直线与所成角的大小是(结果用反三角函数值表示).8.某工程由四道工序组成,完成它们需用时间依次为天.四道工序的先后顺序及相互关系是:可以同时开工;完成后,可以开工;完成后,可以开工.若该工程总时数为9天,则完成工序需要的天数最大是.9.在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).10.对于非零实数,以下四个命题都成立:①;②;③若,则;④若,则.那么,对于非零复数,仍然成立的命题的所有序号是.11.如图,是直线上的两点,且.两个半径相等的动圆分别与相切于点,是这两个圆的公共点,则圆弧,与线段围成图形面积的取值范围是.二.选择题(本大题满分16分)本大题共有4题,每题都给出代号为A,B,C,D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知,且(是虚数单位)是一个实系数一元二次方程的两个根,那么的值分别是()A.B.C.D.13.圆关于直线对称的圆的方程是()A.B.C.D.14.数列中,则数列的极限值()A.等于B.等于C.等于或D.不存在15.设是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”.那么,下列命题总成立的是()A.若成立,则成立B.若成立,则成立C.若成立,则当时,均有成立D.若成立,则当时,均有成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)在正四棱锥中,,直线与平面所成的角为,求正四棱锥的体积.PBCAD17.(本题满分14分)在中,分别是三个内角的对边.若,,求的面积.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数,常数.(1)当时,解不等式;(2)讨论函数的奇偶性,并说明理由.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列(为正整数)满足条件,,…,,即(),我们称其为“对称数列”.例如,数列与数列都是“对称数列”.(1)设是7项的“对称数列”,其中是等差数列,且,.依次写出的每一项;(2)设是项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和;(3)设是项的“对称数列”,其中是首项为,公差为的等差数列.求前项的和.yO1A2B2A1B...M1F0F2Fx.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分9分.我们把由半椭圆与半椭圆合成的曲线称作“果圆”,其中,,.如图,设点,,是相应椭圆的焦点,,和,是“果圆”与,轴的交点,是线段的中点.(1)若是边长为1的等边三角形,求该“果圆...