2004年北京高考理科数学真题及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页。第II卷3至9页。共150分。考试时间120分钟。第I卷(选择题共40分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。3.考试结束,监考人将本试卷和答题卡一并收回。参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c’,c分别表示上、下底面周长,表示斜高或母线长球体的表面积公式其中R表示球的半径一.选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。(1)设全集是实数集R,,,则等于A.B.C.D.(2)满足条件的复数z在复平面上对应点的轨迹是A.一条直线B.两条直线C.圆D.椭圆(3)设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是A.①和②B.②和③C.③和④D.①和④(4)如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是A.直线B.圆C.双曲线D.抛物线(5)函数在区间[1,2]上存在反函数的充分必要条件是A.B.C.D.(6)已知a、b、c满足,且,那么下列选项中一定成立的是A.B.C.D.(7)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种。在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则等于A.B.C.D.(8)函数,其中P、M为实数集R的两个非空子集,又规定,,给出下列四个判断:①若,则②若,则③若,则④若,则其中正确判断有A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题:本大题共6小题,每小题5分,共30分。把答案填在题中横线上。(9)函数的最小正周期是___________(10)方程的解是___________________(11)某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,表面积是______________cm2(12)曲线C:(为参数)的普通方程是__________,如果曲线C与直线有公共点,那么实数a的取值范围是_______________--(13)在函数中,若a,b,c成等比数列且,则有最______________值(填“大”或“小”),且该值为______________(14)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列是等和数列,且,公和为5,那么的值为______________,这个数列的前n项和的计算公式为________________三.解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。(15)(本小题满分13分)在中,,,,求的值和的面积(16)(本小题满分14分)如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:(I)该三棱柱的侧面展开图的对角线长(II)PC和NC的长(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)(17)(本小题满分14分)如图,过抛物线上一定点P()(),作两条直线分别交抛物线于A(),B()(I)求该抛物线上纵坐标为的点到其焦点F的距离(II)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数(18)(本小题满分14分)函数是定义在[0,1]上的增函数,满足且,在每个区间(1,2……)上,的图象都是斜率为同一常数k的直线的一部分。(I)求及,的值,并归纳出的表达式(II)设直线,,x轴及的图象围成的矩形的面积为(1,2……),记,求的表达式,并写出其定义域和最小值(19)(本小题满分12分)某段城铁线路上依次有A、B、C三站,AB=5km,BC=3km,在列车运行时刻表上,规定列车8时整从A站发车,8时07分到达B站并停车1分钟,8时12分到达C站,在实际运行中,假设列车从A站正点发车,在B站停留1分钟,并在行驶时以同一速度匀速行驶,列车从A站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差。(I...