小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com18.2特殊的平行四边形18.2.1矩形第2课时矩形的判定1、下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形2、四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°3、如图,矩形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?4、如图,□ABCD各角的角平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.5、如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB是矩形.第1页共5页小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com6、两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是()A.一般平行四边形B.菱形C.矩形D.正方形7、在四边形ABCD中,∠B=∠D=90°,且AB=CD,四边形ABCD是矩形吗?为什么?8、如图,在四边形ABCD中,AD∥BC,点E、F为AB上的两点,且△DAF≌△CBE.求证:四边形ABCD是矩形.9、如图,在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点.求证:四边形AECF是矩形.10、如图所示,△ABC中,AB=AC,AD是BC边上的高,AE是∠CAF的平分线且∠CAF是第2页共5页DACFPEB小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com△ABC的一个外角,且DE∥BA,四边形ADCE是矩形吗?为什么?11、【提高题】如图,在△ABC中,AB=AC,CD⊥AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?第3页共5页小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com矩形的判定答案1、【答案】C2、【答案】C3、【答案】是矩形,【提示】OE=OF=OG=OH4、【答案】用判定定理“三个角都是直角的四边形是矩形”来证明。5、【答案】用对角线来证明6、【答案】C7、【答案】是矩形,连接AC,△ABC≌△CDA。8、【提示】由△DAF≌△CBE可知AD=BC,所以四边形ABCD是平行四边形;再根据∠A=∠B,且∠A+∠B=180°,所以∠A=∠B=90°;综上所述,四边形ABCD是矩形.9、【提示】∵MN∥BC,EC是∠ACB的平分线∴∠OEC=∠ECB,∠ECB=∠OCE,∴∠OEC=∠OCE∴OE=OC同理可得OF=OC∴OA=OC=OE=OF∴四边形AECF是矩形.10、【答案】是矩形;理由:∠CAE=∠ACB,所以AE∥BC.又DE∥BA,所以四边形ABDE是平行四边形,所以AE=BD,所以AE=DC.又因为AE∥DC,所以四边形ADCE是平行四边形.又因为∠ADC=90°,所以四边形ADCE是矩形.11、【答案】解法一:能.如图1所示,过P点作PH⊥DC,垂足为H.四边形PHDE是矩形.所以PE=DH,PH∥BD.所以∠HPC=∠B.又因为AB=AC,所以∠B=∠ACB.所以∠HPC=∠FCP.又因为PC=CP,∠PHC=∠CFP=90°,所以△PHC≌△CFP.所以PF=HC所以DH+HC=PE+PF,即DC=PE+PF.解法二:能.延长EP,过C点作CH⊥EP,垂足为H,如图2所示,四边形HEDC是矩形.所以EH=PE+PH=DC,CH∥AB.所以∠HCP=∠B.△PHC≌△PFC,所以PH=PF,所以PE+PF=DC.第4页共5页小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com第5页共5页