小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com反比例函数的应用(时间:100分钟,满分:100分)一、填空题(每空2分,共12分)1.长方形的面积为60cm2,如果它的长是ycm,宽是xcm,那么y是x的函数关系,y写成x的关系式是。2.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的函数,t可以写成v的函数关系式是。3.如图,根据图中提供的信息,可以写出正比例函数的关系式是;反比例函数关系式是。二、选择题(5分×3=15分)1.三角形的面积为8cm2,这时底边上的高y(cm)与底边x(cm)之间的函数关系用图象来表示是。2.下列各问题中,两个变量之间的关系不是反比例函数的是A:小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系。B:菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系。C:一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的密度之间的关系。D:压力为600N时,压强p与受力面积S之间的关系。3.如图,A、B、C为反比例函数图象上的三个点,分别从A、B、C向x、y轴作垂线,构成三个矩形,它们的面积分别是S1、S2、S3,则S1、S2、S3的大小关系是A:S1=S2>S3B:S1<S2<S3C:S1>S2>S3D:S1=S2=S3(三)解答题(共21分)1.(12分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象。(1)请你根据图象提供的信息求出此蓄水池的蓄水量。(2)写出此函数的解析式(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?xy-1O2xyBAOC小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com(4)如果每小时排水量是5m3,那么水池中的水将要多长时间排完?2.(9分)如图正比例函数y=k1x与反比例函数交于点A,从A向x轴、y轴分别作垂线,所构成的正方形的面积为4。(1)分别求出正比例函数与反比例函数的解析式。(2)求出正、反比例函数图象的另外一个交点坐标。(3)求△ODC的面积。综合应用创新训练一、学科内综合题如图,Rt△ABO的顶点A(a、b)是一次函数y=x+m的图象与反比例函数的图象在第一象限的交点,且S△ABO=3。1.根据这些条件你能够求出反比例函数的解析式吗?如果能够,请你求出来,如果不能,请说明理由。2.你能够求出一次函数的函数关系式吗?如果能,请你求出来,如果不能,请你说明理由。DxyBAOC小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com二、学科间渗透综合题(15分)一封闭电路中,当电压是6V时,回答下列问题:1、写出电路中的电流I(A)与电阻R(Ω)之间的函数关系式。2、画出该函数的图象。3、如果一个用电器的电阻是5Ω,其最大允许通过的电流为1A,那么直接把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由。三、综合创新应用题(16分)如图所示是某个函数图象的一部分,根据图象回答下列问题:1、这个函数图象所反映的两个变量之间是怎样的函数关系?2、请你根据所给出的图象,举出一个合乎情理且符合图象所给情形的实际例子。3、写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围。4、说出图象中A点在你所举例子中的实际意义。四、中考模拟题(9分)小明在某一次实验中,测得两个变量之间的关系如下表所示:自变量x123412因变量y12.035.983.041.991.00请你根据表格回答下列问题:1、这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由。2、请你写出这个函数的解析式。3、表格中空缺的数值可能是多少?请你给出合理的数值。小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com参考答案教材跟踪训练一、填空题1.反比例函数;2.反比例函数;3.y=-2x二、1.选择D。因为y与x成反比例函数关系,三角形的底与高都必须大于0,所以x>0的图象在第一象限。2.选择C。因为m=ρV,当V=30时,m=30ρ,故为正比例函数。3.选择D。其中S1=S2=S3=|k|三、解答题1、(1)由图象可知:4×12=48,因此蓄水池为48m3。(2)设V=,由上题可知k=48,则函数V与...