2005年山西高考理科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3到10页。考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:如果事件A、B互斥,那么球是表面积公式如果事件A、B相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率其中R表示球的半径一.选择题(1)设为全集,是的三个非空子集,且,则下面论断正确的是(A)(B)(C)(D)(2)一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为(A)(B)(C)(D)(3)已知直线过点,当直线与圆有两个交点时,其斜率k的取值范围是(A)(B)(C)(D)(4)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EF∥AB,EF=2,则该多面体的体积为(A)(B)(C)(D)(5)已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为(A)(B)(C)(D)(6)当时,函数的最小值为(A)2(B)(C)4(D)(7)设,二次函数的图像为下列之一则的值为(A)(B)(C)(D)(8)设,函数,则使的的取值范围是(A)(B)(C)(D)(9)在坐标平面上,不等式组所表示的平面区域的面积为(A)(B)(C)(D)2(10)在中,已知,给出以下四个论断:①②③④其中正确的是(A)①③(B)②④(C)①④(D)②③(11)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A)18对(B)24对(C)30对(D)36对(12)复数=(A)(B)(C)(D)第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。2.答卷前将密封线内的项目填写清楚。3.本卷共10小题,共90分。二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上。(13)若正整数m满足,则m=。(14)的展开式中,常数项为。(用数字作答)(15)的外接圆的圆心为O,两条边上的高的交点为H,,则实数m=(16)在正方形中,过对角线的一个平面交于E,交于F,则①四边形一定是平行四边形①四边形有可能是正方形②四边形在底面ABCD内的投影一定是正方形③四边形有可能垂直于平面以上结论正确的为。(写出所有正确结论的编号)三.解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。(17)(本大题满分12分)设函数图像的一条对称轴是直线。(Ⅰ)求;(Ⅱ)求函数的单调增区间;(Ⅲ)证明直线与函数的图像不相切。(18)(本大题满分12分)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小。(19)(本大题满分12分)设等比数列的公比为,前n项和。(Ⅰ)求的取值范围;(Ⅱ)设,记的前n项和为,试比较与的大小。(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种。假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望。(精确到)(21)(本大题满分14分)已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线。(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且,证明为定值。(22)(本大题满分12分)(Ⅰ)设函数,求的最小值;(Ⅱ)设正数满足,证明参考答案一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1.A2.C3.B4.C5.A6.D7.C8.B9.C10.B11.B12.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.15514.67215.116.①③④三、解答题17.本小题主要考查三角函数...