2007年四川高考文科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3到10页。考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:如果事件A、B互斥,那么球是表面积公式如果事件A、B相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率其中R表示球的半径一、选择题(1)设集合M={4,5,6,8},集合N={3,5,7,8}那么M∪N=(A){3,4,5,6,7,8}(B){5,8}(C){3,5,7,8}(D){4,5,6,8}(2)函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是(A)150.2克(B)149.8克(C)149.4克(D)147.8克(4)如图,ABCD-A1B1C1D1为正方体,下面结论错误的是(A)BD∥平面CB1D1(B)AC1⊥BD(C)AC1⊥平面CB1D1(D)异面直线AD与CB所成的角为60°(5)如果双曲线=1上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是(A)(B)(C)(D)(6)设球O的半径是1,A、B、C是球面上三点,已知A到B、C两点的球面距离都是,且二面角B-OA-C的大小是,则从A点沿球面经B、C两点再回到A点的最短距离是(A)(B)(C)(D)(7)等差数列{an}中,a1=1,a3+a5=14,其降n项和Sn=100,则n=(A)9(B)10(C)11(D)12(8)设A(a,1),B(2,b),C(4,5)为坐标平面上三点,O为坐标原点,若OA与OB在OC方向上的投影相同,则a与b满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12(9)用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有A.48个B.36个C.24个D.18个(10)已知抛物线y-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于A.3B.4C.3D.4(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l1、l2、l3是同一平面内的三条平行直线,l1与l2与l3同的距离是2,正三角形ABC的三顶点分别在l1、l2、l3上,则△ABC的边长是A.2B.C.D.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).的展开式中的第5项为常数项,那么正整数的值是.14、在正三棱柱中,侧棱长为,底面三角形的边长为1,则与侧面所成的角是____________15、已知的方程是,的方程是,由动点向和所引的切线长相等,则运点的轨迹方程是__________________16、下面有5个命题:①函数的最小正周期是;②终边在轴上的角的集合是;③在同一坐标系中,函数的图象和函数的图象有3个公共点;④把函数的图象向右平移得到的图象;⑤角为第一象限角的充要条件是其中,真命题的编号是___________(写出所有真命题的编号)三、解答题:本大题共6小题。共74分,解答应写出文字说明。证明过程或运算步骤(17)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家对一般产品致冷商家的,商家符合规定拾取一定数量的产品做检验,以决定是否验收这些产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.3,从中任意取出4种进行检验,求至少要1件是合格产品的概率.(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,来进行检验,只有2件产品合格时才接收这些产品,否则拒收,分别求出该商家计算出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率。(18)(本小题满分12分)已知cosα=,cos(α-β)=,且0<β<α<,(Ⅰ)求tan2α的值;(Ⅱ)求β.(19...