332正视图侧视图俯视图图12011年普通高等学校招生全国统一考试文科数学(湖南卷)参考公式(1)柱体体积公式VSh,其中S为底面面积,h为高.(2)球的体积公式343VR,其中R为球的半径.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=MN=1,2,3,4,5,M∩C∪﹛﹜uN=2,4,﹛﹜则N=A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}2.若,为虚数单位,且则A.,B.C.D.3.“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.设图1是某几何体的三视图,则该几何体的体积为A.B.C.D.5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,附表:0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6.设双曲线的渐近线方程为,则a的值为A.4B.3C.2D.17.曲线在点M(,0)处的切线的斜路为A.B.C.D.8.已知函数,若有,则b的取值范围为A.B.C.D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系xOy中,曲线C1的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为,则C1与C2的交点个数为10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(二)必做题(11~16题)11.若执行如图2所示的框图,输入,则输出的数等于12.已知f(x)为奇函数,g(x)=f(x)+9,g(-2)=3,则f(2)=_________.13.设向量a,b满足|a|=2,b=(2,1),且a与b的方向相反,则a的坐标为________.14.设1,m在约束条件1yxymxxy下,目标函数5zxy的最大值为4,则m的值为.15.已知圆22:12,Cxy直线:4325.lxy(1)圆C的圆心到直线l的距离为.(2)圆C上任意一点A到直线l的距离小于2的概率为.16.给定*kN,设函数**:fNN满足:对于任意大于k的正整数n,()fnnk(1)设1k,则其中一个函数f在1n处的函数值为;(2)设4k,且当4n时,2()3fn,则不同的函数f的个数为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(I)求角C的大小;(II)求sinA-cos(B+)的最大值,并求取得最大值时角A、B的大小.18.(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份是我降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(Ⅰ)完成如下的频率分布表近20年六月份降雨量频率分布表降雨量70110140160200220频率(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.19.(本小题满分12分)如图3,在圆锥PO中,已知2,POO的直径2,,ABCABDAC点在上,且CAB=30为的中点.(Ⅰ)证明:平面;(Ⅱ)求直线和平面所成角的正弦值.20.(本小题满分13分)某企业在第1年初购买一台价值为120万元的设备,的价值在使用过程中逐年减少.从第2年到第6年,每年初的价值比上年初减少10万元;从第7年开始,每年初的价值为上年初的75%.(Ⅰ)求第年初的价值的表达式;(Ⅱ)设,若大于80万元,则继续使用,否则须在第年初对更新,证明:须在第9年初对更新.21...