小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com24.2.1点和圆的位置关系知识点1.点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:点P在⊙O内d<r;点P在⊙O上d=r;点P在⊙O外d>r.2.圆的确定(1)平面上,经过一点的圆有________个.(2)平面上,经过两点的圆有________个.(3)不在同一直线上的三个点确定__________圆.3.三角形的外接圆经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形__________________________的交点,叫做这个三角形的外心,它到三角形_______________________.4.反证法假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种证明方法叫做反证法.一、选择题1.下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在2.若△ABC的外接圆的圆心在△ABC的内部,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为()A.5cmB.6cmC.7cmD.8cm4.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的圆心坐标是()小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.comA.(-1,2)B.(1,-1)C.(-1,1)D.(2,1)5.Rt△ABC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,那么斜边中点D与⊙O的位置关系是()A.点D在⊙A外B.点D在⊙A上C.点D在⊙A内D.无法确定6.若⊙A的半径为5,点A的坐标为(3,4),点P的坐标为(5,8),则点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不确定7.如图,⊙O是△ABC的外接圆,若∠B=30°,AC=,则⊙O的直径为()A.1B.C.2D.8.用反证法证明“三角形中至少有一个内角小于或等于60°”时,首先应假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°二、填空题9.点A在以O为圆心,3cm为半径的⊙O内,则点A到圆心O的距离d的范围是________.10.如图,在△ABC中,∠ACB=90°,AC=2cm,BC=4cm,CM为中线,以C为圆心,cm为半径作圆,则A、B、C、M四点在圆外的有_________,在圆上的有_________,在圆内的有_________.CA.OB小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com11.若AB=4cm,则过点A、B且半径为3cm的圆有______个.12.在△ABC中,BC=24cm,外心O到BC的距离为6cm,则△ABC的外接圆半径是____________.13.一个点与定圆上最近点的距离为4cm,最远点的距离为9cm,则此圆的半径是________.14.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是________cm;(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是________cm.15.已知Rt△ABC的两直角边为a和b,且a、b是方程的两根,则Rt△ABC的外接圆面积是__________________.三、解答题16.已知圆的半径等于5cm,根据下列点P到圆心的距离:(1)4cm;(2)5cm;(3)6cm,判定点P与圆的位置关系,并说明理由.17.在Rt△ABC中,∠C=90°,BC=3m,AC=4m,以B为圆心,以BC为半径作⊙B,D、E是AB、AC中点,A、C、D、E分别与⊙O有怎样的位置关系?(画出图形,写过程)18.如图,△ABC中,AB=AC=10,BC=12,求△ABC的外接圆⊙O的半径.19.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.某公园有一个边长为4米的正三角形花坛,三角形的顶点A、B、C上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行...