小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com第二十三章旋转23.1图形的旋转一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.平面图形的旋转一般情况下会改变图形的A.位置B.大小C.形状D.性质【答案】A【解析】旋转和平移一样只改变图形的位置.故选A.2.如图所示,将平面图形绕轴旋转一周,得到的几何体是A.球B.圆柱C.半球D.圆锥【答案】A3.…依次观察这三个图形,并判断照此规律从左向右的第四个图形是【答案】D【解析】根据图形,有规律可循.从左到右图形顺时针方向旋转,可得到第四个图形是D.故选D.4.若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是A.15°B.30°C.45°D.75°【答案】C【解析】如图:小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com∵∠AOB=60°,∠BOD=15°,∴∠AOD=∠AOB–∠BOD=60°–15°=45°,故选C.5.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是A.96B.69C.66D.99【答案】B【解析】现将数字“69”旋转180°,得到的数字是:69.故选B.学科~网6.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是A.25°B.30°C.35°D.40°【答案】B二、填空题:请将答案填在题中横线上.7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠BOC=__________度.【答案】60°小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com【解析】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠BOC=∠BOD+∠AOB=45°+15°=60°.故答案为:60°.8.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得C′C∥AB,则∠B′AB等于__________.【答案】50°[来源:学科网ZXXK]9.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=__________.【答案】【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,[来源:学_科_网]小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com可证得AD=AB′=.学科¥网∵∠C=90°,AC=BC=,∴AB==2,∴BD==,C′D=×2=1,[来源:学§科§网Z§X§X§K]∴BC′=BD−C′D=−1.故答案为:−1.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.【解析】(1)△A1B1C如图所示.小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com(2)A1(0,6).(3)点B旋转到B1的路线长即为的长度.由题知旋转角为90°,BC=,∴==.11.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.(2)∵BA=BC,∠ABC=90°,∴AC=.∵CD=3AD,小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com∴AD=,DC=3.由旋转的性质可知:AD=EC=.[来源:Z#xx#k.Com]∴DE=.12.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD–BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.∴DE=CE+CD=AD+BE.[来源:学科网ZXXK](2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE–CD=AD–BE.(3)DE=BE–AD(或AD=BE–DE,BE=AD+DE等).易证得△ACD≌△CBE,∴AD=CE,DC=BE,∴DE=CD–CE=BE–AD.