小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com综合练习平行线的性质与判定1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°.∵PF平分∠EFD,∴∠PFD=∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=∠ABC,∠ECB=∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.小学、初中、高中各种试卷真题知识归纳等免费下载www.doc985.com