绝密★启用前2014年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数的最小正周期是.2.若复数z=1+2i,其中i是虚数单位,则=___________.3.设常数,函数,若,则.4.若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程为___________.5.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.6.若实数x,y满足xy=1,则+的最小值为______________.7.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).8.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.9.设若是的最小值,则的取值范围是.10.设无穷等比数列{}的公比为q,若,则q=.11.若,则满足的取值范围是.12.方程在区间上的所有解的和等于.13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结构用最简分数表示).14.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为.二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15.设,则“”是“”的()(A)充分条件(B)必要条件(C)充分必要条件(D)既非充分又非必要条件16.已知互异的复数满足,集合={,},则=()(A)2(B)1(C)0(D)17.如图,四个边长为1的正方形排成一个大正方形,AB是在正方形的一条边,是小正方形的其余各个顶点,则的不同值的个数为()(A)7(B)5(C)3(D)118.已知与是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()(A)无论k,如何,总是无解(B)无论k,如何,总有唯一解(C)存在k,,使之恰有两解(D)存在k,,使之有无穷多解三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥,zxxk其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.20.(本题满分14分)本题有2个小题,学科网第一小题满分6分,第二小题满分1分。设常数,函数(1)若=4,求函数的反函数;(2)根据的不同取值,讨论函数的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米,设在同一水平面上,从和看的仰角分别为.(1)设计中是铅垂方向,若要求,问的长至多为多少学科网(结果精确到0.01米)?(2)施工完成后.与铅垂方向有偏差,现在实测得zxxk求的长(结果精确到0.01米)?22(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系中,对于直线:和点记若<0,则称点被直线分隔。若曲线C与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M到点的距离与到轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明轴为曲线E的分隔线.23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;zxxk(2)若是等比数列,且,求正整数的最小值,学科网以及取最小值时相应的公比;(3)若成等差数列,求数列的公差的取值范围.