绝密★启用前2015年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数的最小正周期为.2.设全集.若集合,,则.3.若复数满足,其中是虚数单位,则.4.设为的反函数,则.5.若线性方程组的增广矩阵为解为,则.6.若正三棱柱的所有棱长均为,且其体积为,则.7.抛物线上的动点到焦点的距离的最小值为1,则.8.方程的解为.9.若满足,则目标函数的最大值为.10.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11.在的二项式中,常数项等于(结果用数值表示).12.已知双曲线、的顶点重合,的方程为,若的一条渐近线的斜率是的一条渐近线的斜率的2倍,则的方程为.13.已知平面向量、、满足,且,则的最大值是.14.已知函数.若存在,,,满足,且,则的最小值为.二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.设、,则“、均为实数”是“是实数”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.下列不等式中,与不等式解集相同的是().A.B.C.D.17.已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为().A.B.C.D.18.设是直线与圆在第一象限的交点,则极限().A.B.C.D.三.解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为,底面的一条直径为,为半圆弧的中点,为劣弧的中点.已知,,求三棱锥的体积,并求异面直线与所成角的大小.20.(本题满分14分)本题共2小题,第1小题6分,第2小题8分.已知函数,其中为实数.(1)根据的不同取值,判断函数的奇偶性,并说明理由;(2)若,判断函数在上的单调性,并说明理由.21.(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地;时,乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分.[ZXXK]已知椭圆,过原点的两条直线和分别于椭圆交于、和、,设的面积为.(1)设,,用、的坐标表示点到直线的距离,并证明;(2)设,,,求的值;(3)设与的斜率之积为,求的值,使得无论与如何变动,面积保持不变.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分.已知数列与满足,.(1)若,且,求数列}{na的通项公式;(2)设}{na的第项是最大项,即,求证:数列的第项是最大项;(3)设,)N(n,求的取值范围,使得对任意,,,且.