绝密★启用前2021年普通高等学校招生全国统一考试(甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名准考证号填写在答题卡上、.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一选择题:本题共、12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则()A.B.C.D.2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.已知,则()A.B.C.D.4.下列函数中是增函数的为()A.B.C.D.5.点到双曲线的一条渐近线的距离为()A.B.C.D.6.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5B.1.2C.0.8D.0.67.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.8.在中,已知,,,则()A.1B.C.D.39.记为等比数列的前n项和.若,,则()A.7B.8C.9D.1010.将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.811.若,则()A.B.C.D.12.设是定义域为R的奇函数,且.若,则()A.B.C.D.二填空题:本题共、4小题,每小题5分,共20分.13.若向量满足,则_________.14.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.15.已知函数的部分图像如图所示,则_______________.16.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.三解答题:共、70分.解答应写出交字说明证明过程程或演算步骤,第、17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:0.0500.0100.001k3.8416.63510.82818.记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.19.已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.20.设函数,其中.(1)讨论的单调性;(2)若的图象与轴没有公共点,求a的取值范围.21.抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.(1)求C,的方程;(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为,M为C上的动点,点P满足,写出Р的轨迹的参数方程,并判断C与是否有公共点.[选修4-5:不等式选讲]23.已知函数.(1)画出和的图像;(2)若,求a的取值范围.