2014高考数学山东【理】试题及答案2014高考数学山东【理】一、选择题1.已知,是虚数单位,若与互为共轭复数,则()A.B.C.D.2.设集合,,则()A.B.C.D.3.函数的定义域为()A.B.C.D.4.用反证法证明命题:“已知为实数,则方程至少有一个实根”时,要做的假设是()A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根5.已知实数满足(),则下列关系式恒成立的是()A.B.C.D.6.直线与曲线在第一象限内围成的封闭图形的面积为()A.B.C.2D.47.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,,,,,将其按从左到右的顺序分别编号为第12014高考数学山东【理】试题及答案一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.1B.8C.12D.188.已知函数,,若有两个不相等的实根,则实数的取值范围是()A.B.C.D.9.已知满足约束条件当目标函数在该约束条件下取到最小值时,的最小值为()A.5B.4C.D.210.已知,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为()A.B.C.D.二、填空题11.执行右面的程序框图,若输入的的值为1,则输出的的值为;12.在中,已知,当时,的面积为;13.三棱锥中,,分别为,的中点,记三棱锥的体积为,的体积为,则;14.若的展开式中项的系数为,则的最小值为;15.已知函数.对函数,定义关于的“对称函数”为2开始输入x是0n3430xx结束1xx否输出n1nn2014高考数学山东【理】试题及答案,满足:对任意,两个点,关于点对称,若是关于的“对称函数”,且恒成立,则实数的取值范围是;三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知向量,,设函数,且的图象过点和点.(Ⅰ)求的值;(Ⅱ)将的图象向左平移()个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.17.(本小题满分12分)如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.(Ⅰ)求证:;(Ⅱ)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.32014高考数学山东【理】试题及答案18.(本小题满分12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上记3分,在上记1分,其它情况记0分.对落点在上的来球,小明回球的落点在上的概率为,在上的概率为;对落点在上的来球,小明回球的落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.19.(本小题满分12分)已知等差数列的公差为2,前项和为,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.42014高考数学山东【理】试题及答案20.(本小题满分13分)设函数(为常数,是自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在内存在两个极值点,求的取值范围.21.(本小题满分14分)已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为3时,为正三角形.(Ⅰ)求的方程;(Ⅱ)若直线,且和有且只有一个公共点,(ⅰ)证明直线过定点,并求出定点坐标;(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.参考答案2014年普通高等学校招生全国统一考试(山东卷)理科数学参考答案一.1、D2、C3、C4、A5、D6、D7、C8、B9、B10、A二.11、12、13、14、15、三.16、解:(Ⅰ)已知,的图像过点,52014高考数学山东【理】试题及答案解得(Ⅱ),设的对称轴为,解得,解得的单调赠区间17、解:(Ⅰ)证明:因为四边形是等腰梯形,且所以,又由是中点,因此且.连接在四棱柱中,因为,可得所以四边形为平行四边形因此又,,所以(Ⅱ)由(Ⅰ)知,平面过向做垂线交于,连接,由,可得,故为二面角的平面角62014高考数学...